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MATRIX AND OTHER DIRECT METHODS FOR THE SOLUTION
OF SYSTEMS OF LINEAR DIFFERENCE EQUATIONS

By W. G. BICKLEY anp J. McNAMEE
(Communicated by G. Temple, F.R.S.—Received 26 November 1958)
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70 W. G. BICKLEY AND J. McNAMEE ON

The investigations described in this paper were initiated in an attempt to replace by direct methods
the successive approximation methods such as those of Southwell and Thom for the solution of
systems of difference equations arising in the approximate solutions of linear partial differential
equations. Boundary problems of this type form the subject of part III, which is the kernel of the
paper. As the work progressed it was found that the methods evolved were applicable, and
capable of extension, to step-by-step solutions also, and to ordinary as well as partial differential
equations. These topics are presented in parts I, IT and IV.

Matrix methods naturally predominate. The methods are illustrated by small-scale examples
worked on desk machines, but the operations involved are, we believe, capable of being handled
efficiently and simply by modern high-speed digital computers.

PREFATORY NOTE

When we began this work two years ago, our main interest was in the numerical solution of
partial differential equations of elliptic type and we envisaged publication of part III as a
separate and complete paper. Subsequently, it proved not difficult to extend some of the
methods of part III to other types of partial differential equation and the results we have
obtained here are given in part I'V.

One does not proceed very far in the numerical study of partial differential equations
without encountering difficulties whose full elucidation is best achieved in the simpler
context of ordinary differential equations. As instances of such difficulties, we cite the
numerical treatment of non-linear equations and the problem of control, i.e. the exclusion
of unwanted solutions; we consider such questions in part I. Part IT is concerned with
boundary-value problems of ordinary differential equations and is intended mainly as a
simple introduction to the concepts and notation of part ITI.

The four parts of the paper are unified by their subject-matter and treatment, since the
entire paper is concerned with methods for the numerical solution of differential equations.
The compact notation of matrix algebra has been employed extensively. In writing the
paper, we thought it preferable to make each part more or less self-contained, even at
the cost of some repetition.

Our main method of attack is to replace the given differential system by a difference
system and the techniques we propose are for the most part methods for solving difference
equations. Current discrete techniques are more closely related to familiar methods of
continuous analysis than might at first sight appear; indeed, some of the techniques
presented in the paper are direct borrowings from continuous analysis. None the less, we
have consistently adopted the point of view that the difference system is worthy of study in
its own right. Sometimes we can improve the approximation (to the differential system),
by including higher differences—though even then we are still, in practice, concerned with
a difference equation.

It is worth emphasizing that the goodness or badness of the approximation depends not
merely on the tabular interval chosen and the order of differences included, but also on the
nature of the desired solution—in particular, on the distribution of its singularities and the
rapidity of its component Fourier oscillations.

In general, we may hope that the difference equation will yield a solution which is at
least co-tabular with the desired solution for the interval chosen and the prescribed ranges
of the variables. It is intuitively evident that the property of co-tabularity is not in general
sufficient to define a unique function when the variables range continuously over the
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SYSTEMS OF LINEAR DIFFERENCE EQUATIONS. I 71

prescribed domain. Some method of using the tabular values to interpolate to non-
tabular points is also required, and by imposing suitable restrictions, we may be able to
define a unique interpolating function whose relationship to the desired solution can be
precisely stated. Whittaker (1915) has shown that a unique interpolating function of a
single variable can be defined by a set of tabular values uniformly spaced along the real
axis; so far as we are aware, the properties of a similar interpolating function of two or more
variables have not been investigated.

From another point of view, the discrete solution of a continuous linear problem can be
regarded as an attempt to approximate the solution by means of discrete base functions.
If the base functions can be interpolated in a unique way, the problem of assessing the value
of a discrete solution can be treated as a particular instance of the approximation of con-
tinuous functions by continuous base functions.

Some of the material in the paper was presented in colloquia at Farnborough, Tedding-
ton, and Newcastle upon Tyne. The discussion which followed these colloquia has helped
us to eliminate some faults of presentation; in particular, we are indebted to Dr E. T.
Goodwin and Dr H. I. Scoins who read and commented on the draft of part III.

[. THE USE OF MATRIX OPERATORS IN THE NUMERICAL SOLUTION OF
ORDINARY DIFFERENTIAL EQUATIONS: INITIAL-VALUE PROBLEMS

1. INTRODUCTION

Systematic use of matrix arrays in the formulation of difference operations and difference
equations is of fairly recent growth. In this paper we give some elementary examples of
matrix operators which produce the successive differences of a univariate table; these
operators are then used to elucidate certain features of methods for solving linear difference
equations. We shall be concerned in parts I and II with those difference equations which
arise in the numerical treatment of ordinary differential equations by discrete techniques.
Initial-value problems are treated in §3 of part I; boundary-value problems in part II.
Our illustrations of matrix formulations are confined almost entirely to second-order
differential equations; but the concepts and techniques can be applied more widely.

The presentation of difference schemes in the form of matrix operators acting on vector
operands is prima facie a mere notational device and some of the results recorded here can
be obtained otherwise. The matrix presentation has however two advantages. It codifies
in a compact notation the essential elements of computing procedures and provides
algorithms for carrying out the computation; and it is suggestive: sometimes, the achieve-
ment of a perspicuous notation brings computational shortcuts to our notice.

1-1. Matrix notation

We introduce here four simple matrices which are frequently employed throughout the
paper: the unit matrix / and the matrix Z;; which has a unit in the (z, j)th location and zeros
elsewhere; the auxiliary unit matrices, § and $* (transpose of §). The only non-zero ele-
ments of § are units in the first superdiagonal; S” has units in the rth superdiagonal. Zero
elements of a matrix are frequently indicated by dots; occasionally, a dot is used to indicate
a zero matrix.

9-2
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72 W. G. BICKLEY AND J. McNAMEE ON

Unless otherwise specified, square matrices employed are assumed to be of order n. The
operand (generally a column or row vector, occasionally a rectangular m X n matrix) is
distinguished throughout part I by a bold-face symbol. There appears to be no agreed
symbolism for matrix operators and vector equations of the type considered in this paper,
and the notation adopted here and later is tentative.

2. DIFFERENCE AND SUMMATION OPERATORS

The familiar difference operators can be represented by linear combinations of the
matrices 1, § and S*, and we illustrate this here for backward and forward differences.
We can regard § and S* as operators, and it will be convenient to recall their operational
properties.

The action of § and $* on a matrix Z is a shift, up or down, right or left, and can be
conveniently exhibited by a mnemonic due to Turnbull & Aitken (1945):

7 — I:Zﬁ»l,j], S*7, [ . ],
. Zi-1,j (1)
ZS: [. Zi,j—l]’ ZS* - [Zi,j+1 ']'

The shift gives rise to a vacant row or column (as indicated by the dot) and suppresses a
row or column; for example, the first row of Z is suppressed when SZ is formed.
We now consider a sequence of function values ..., z_,, z_,, 2y, 21, Zy, ..., and select from

it the sequence z,, z,, ..., z, which we array in a column z. To obtain the backward differ-
ences of the tabular values in z, we operate on z with (/—S$%):
(I-S8S*)z =17

The difference Vz; (7 4 1) now occupies the position previously occupied by z;;i.e. (I—S%)

is a representation of the difference operator V. The difference column contains a redundant

element z,, since the first element of z is unaltered by the operation. Operating again with
g% i

(I—S$*), we obtain (I—§%)2z = 7",

i.e. a column of second difference with two redundant elements. Noting, however, that
(I—S8*) possesses an inverse, we have

z = (I—8%)"12' = (I—§%)-27",

and it is seen that the redundant elements are precisely those needed to build the tabular
values from the differences. The inverse (/—S8*)~1 is a lower-triangular matrix all of whose
elements are units; it is a summation operator. It is sometimes desirable to suppress the
redundant element: this can be achieved by operating, not on z, but on z—z,, where z, is
a vector all of whose elements are z;.

We may notice here an interpretation of initial-value processes which is suggested by
the Heaviside operational theory. To this end, we introduce the notation z™ for a vector
whose entries are V7z, (i = 1, ...,n) and z{™ for a vector whose elements have the constant
value V7z;. Noting, for example, that

(I-5%) (a—20) 2 — 20—,

we have (I—=8*)[(I—5%) (z—zy) — 2] = z@. (2)
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SYSTEMS OF LINEAR DIFFERENCE EQUATIONS. 1 73
From this we deduce that the difference equation
Viz; = fis (3)

with the initial values z, and Vz,, has the solution
Z =12Zy+ ([—S*)"1z(P 4 (1—5%)21. (4)

This interpretation can be extended to more general applications; but it is perhaps less well
adapted to step-by-step computing routines than is the alternative method of §3-1. In
anticipation of § 31, we employ the above interpretation to determine the result of operating
with (/—S5%*) on a column whose elements are (written row-wise) :

O’ 03 32mjé? 62”1.][;’)9 82mﬂ)

It is easily seen from the above reasoning that

0[RS 0T
0 32m—2(‘f2 _.fl) §2m—{fl%
(I_S*)—Z 82m‘]F2 — 82m—2(‘f3_‘]f1) _([_S*)—l (S‘Zm—v‘l%
32m‘f3 32m—2(ﬂ_ﬁ) 32m—%%
~32mﬂ_ ~82m*2(‘]"5 _ji)_ ~32m—%%_
and we may express this result by the notation
(I—S§%)=2fom) — flem=2)_flom=21_ (] %) =1 §¥ffam-1], (5)

This result enables us to determine the column of values produced by double summation
of differences of order 2m without explicitly operating with (I—S$*)~2. The operation
automatically interprets the constants of summation by securing that the first two elements
of the sum of the columns on the right side of (5) are zero.

Hitherto we have employed the operator (/—5*) and its powers to represent backward
differences. If—as is most frequent in practical applications of difference equations—we
wish to advance from data at x}, x,, ..., this appears to be the natural interpretation.t We
can obtain equivalent representations for forward differences by using the operator (§—1)
and its powers. For example, a complete forward difference table can be presented in matrix
notation as

IZ+ (S—1)ZS+ (S—1)2ZS>+ ...

Z here denotes a matrix of indefinite lateral extent with z as its first column and zeros
elsewhere; the post-multipliers $” execute the requisite right shift. The differences appear
as an upper-triangular table terminated by the backward diagonal, the elements below
this diagonal being redundant. A lower-triangular table of backward differences—such

1 The designation of the entries in a difference table as backward, forward, or central, is somewhat
misleading. The entries in the table are independent of the labelling; when we wish to use the entries, we
select from them a sequence appropriate to our purpose, and it is more correct to attribute the designation
backward, forward, or central, to this sequence.
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74 W. G. BICKLEY AND J. McNAMEE ON

as is produced by the National Accounting machine—can be obtained if the fore-operators
(S—1) are replaced by (I—S*)".

Another form of difference table—with no redundant elements—can be obtained if the
function values are located along the principal diagonal of a matrix which we call Y to
distinguish it from Z above. From the properties of S it is clear that

SY—YS (6)

is a superdiagonal matrix whose elements are the first forward differences of the tabular
values. Repeating the operation,

S2Y —25Y S+ Y52

is a matrix with second differences in the second super-diagonal, A%, being in the ith row.
When the units in the super-diagonal of § are replaced by 1/4;, 1/h,, ..., the entries in the
matrix array after m operations are

r=0

Conventional divided differences can be obtained by a simple modification of the successive
operators. It may be noted that (6) above is reminiscent of the definition of a derivative
in matrix mechanics.

We shall make considerable use of the operator (/—S$*)2 and its inverse in § 3. A significant
feature of these operators is that they are lower-triangular and can be extended indefinitely
downward. If the computation is interrupted after n rows, we can extend it to additional
rows without modification of the computation already completed ; the operators are, then,
appropriate to step-by-step arithmetic.

3. MATRIX FORMULATION OF INITIAL-VALUE PROBLEMS

In this section we formulate some algorithms for the numerical solution of second-order
differential equations. We follow current practice in replacing differential operators by
central-difference expansions truncated at a suitable order of difference. The matrix
presentation of this truncated expansion assumes different forms according as the data is
of initial-value or boundary-value type. A further distinction arises from the nature of the
equation to be solved. If this equation is (i) linear or (ii) formally soluble for the highest
derivative, initial-value problems are generally tractable. Computing routines for equations
of the type (ii) are usually unsophisticated and in general they do not make use of any
simplifying features in the form of the equation to be solved; the conceptual simplicity of
such routines renders them widely applicable and easy to comprehend. The relative sophis-
tication of matrix methods may appear to be an unnecessary refinement in the numerical
treatment of these equations; we have, however, explained in some detail the routine of
§3-1, since it may be of use in electronic computing and it appears to differ considerably
from routines currently employed. Section 3-2 gives methods for linear equations of
initial-value type; these methods depend essentially on simplifying features which are
frequently present in the second-order differential equations of mathematical physics.
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SYSTEMS OF LINEAR DIFFERENCE EQUATIONS. I 75

3-1. Equations formally soluble for the highest derivative

We consider first the equation
d?z/dx? = f(x, z) (7)

(the modifications required when the derivative dz/dx is explicitly present in f are con-
sidered later). This equation can be written in the central-difference form

32(1—§3+f— )2 =, 8
1290 )7 7P (8)

h being the tabular interval. Dividing by the expression in brackets, this becomes

0z 4 3196
12 240 60480~'")f' (9)

0%z = h2(1 +

We may use the initial data (which invariably involves a derivative) at, say, z; to deter-
mine two starting values z,, z,. Equation (9) and the initial conditions then determine a
set of equations of which the first four are

Zy =2y,
—2z,+2y = —2z,+z,,
h? h?
Z1~2Z2—|—Z3:h?fz+ﬁa%—m5%+..., (10)
h2 /Z2
22—2Z3—|—Z4 = h%+1—2—3?fs—%3%+..

The matrix on the left of (10) is (/—S5*)2. If this operator is inverted, the right side of (10)
can be summed row by row as the differences become available. The double sum of the
column v whose elements are

2y, —2z+z, By B,
can be expressed as a recurrence relation. Using the notation
w = (I—S8%)"2v,
then w; = 2w, —w,_y+Rf, (1>2). (11)

Explicit operation with (/—S8%*)~% on columns involving differences of f; can be evaded by
using (5). As illustration, we write out the first four rows of the summed equations:

Z Wy Si—h .
— J,
2l || e | gy Y|
zg| | s Js—h oy
Z4 Wy Ji=h oy

We may write these equations in the symbolic form

0% oY
2¥%'2 Z z
z; = w;+h*% {12 240+"'}’ (12)
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76 W. G. BICKLEY AND J. McNAMEE ON

where 22§?m symbolizes the matrix summation of (5). In the practical use of this equation,
we must be able to build f(x;, z;) from its estimated or computed differences before we know
z;; (12) is, then, an equation to determine z;.

This routine differs considerably from current summation procedures (e.g. Herrick
1951; Milne 1953; I.A.A.T. 1956). The main deviation is in the choice of summation con-
stants: starting values z, and z, are computed in the normal way from the Taylor series
but each column of summed differences carries its own summation constants which ensure
that the pre-set values z, and z, are not disturbed by the addition of higher-order differences.

Minor deviations are:

(1) the Taylor series is converted into a factorial series (see example 3-11 below) and
used to compute even-order differences 9”f, and odd-order differences §%"~!f}, as far as
necessary or practicable;

(ii) the factorial series is used to choose and compute a difference of moderately high
order which varies only slowly throughout the range (it is sometimes assumed that a
difference of some order is constant and any error resulting from this assumption is corrected
in a trial-and-error process);

(iii) the elements of the column w are of the order of magnitude of the initial values
[in a currently used method (Herrick 1951), they are of the order 42 (initial values)];

(iv) the summed differences which we have denoted by 220?" are in general considerably
smaller than the differences 0%7~2 but this does not necessarily enhance convergence since
the elements of the column w are here of smaller magnitude;

(v) odd-order differences (save for the starting differences) are omitted, but this con-
venience may be lost if the derivative dz/dx is explicitly present in the function f of (7).

It is convenient to interpolate here a note on first-order summation—a process required
in the numerical solution of second-order equations of the type

d?z/dx? = f(x, z, dz/dx).

The above method of solution then requires a subroutine to determine dz/dx. We can
exhibit the subroutine most simply by considering the first-order equation

dz/dx = f(x, 2), (13)

taking (for simplicity of explanation) the initial value z, to be zero. We replace (13) by the
finite-difference equivalent

02iy = Vz; = hp(1 —150% +7560" — ... ) iy

3 $

(14)

the backward-difference operator being introduced, since we shall use (14) as an equation
to determine z,. Suppressing for the moment, the difference 46/ and higher-order differ-
ences, (14) can be written in matrix form as

(I—5*)z = $h(I+8*— 1)) 1,
ic. z = Yh(I—S8%)=1 (I+-§% —1I,)) £.

The operator T" = §(I—S8*)~! (I+S* —1},) is the trapezoidal-sum operator since the pth
element of 77 is
sttt afy
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SYSTEMS OF LINEAR DIFFERENCE EQUATIONS. I 77

If the difference columns are now restored, (14) may be treated by operating directly
with (/—S8%*)~! on even-order difference columns; alternatively, the values yielded by
summation can be expressed as odd-order differences by an interpretation similar to (5).
The first element of each difference column is zero, and the first element of the corre-
sponding summed column is zero.

A linear example which has been studied in detail by Herrick (1951) permits a simple
presentation of the numerical solution of (7) and at the same time affords a direct numerical
comparison with an alternative method. The first four rows of the computation are given
in example 3-11.

Example 3-11 d2z dz

qe = 0, z,=2(0)=0, P

A second starting value can be obtained from the Taylor series. The starting differences
can also be obtained if the Taylor series is converted into a central factorial series, using the

1 for x=0.

identities o
}lm = My + (T+ 1) [aime{r—2} + Qrg My g3 + .. ‘]’
where x = mh, and the central factorials and reduced central factorials are defined by
, r—1 1 mir
m = pl:[(){m —p+3(r—1)} my =", Omy=me_y.

The notation for central factorials and reduced central factorials is that of Aitken (1932).
The first five of the coefficients a, ,, are

g — L 3+5(r—4)
2794 Tt T 5760
do — 9+417(r—6) (5r—26)
6 2903040 ’
15+ (r—8) (175r2— 26957 +10449)
e = 13934 59200 J
4 9t (r—10)% (385" — 77007 + 38874)
v, 107 36 78732 28800 .

The above coefficients suffice for the conversion of the first twelve powers, save for the
constant term in the factorial polynomial for the reduced twelfth power; this term is
(21212!1)-1,

The wanted function in this example has no singularity except at infinity and the
differences at x = 0 and x = } can be calculated easily. We can go further and compute
the fourth differences from x = 0-0 to x = 1-0, using an interval 2 = 0-1. The computed
fourth differences of z from the first two terms of the expression for §*d?z/dx?, i.e.

—BSm+ 17 [myg +3m]
are
m 1 2 3 4 5 6 7 8 9 10

_h8td%z/da? 100 198 295 389 478(1) 563 (1) 642(1) 713(3) 775(5) 832(8)
The errors in the computed values are recorded in brackets. Remembering the overall
factor k2 in (12), it can be seen that conversion of the first four terms of the Taylor series
enables us to determine z to 8 or 9 decimals in the range 0-0 to 1-0.

10 Vor. 252. A,
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78 W. G. BICKLEY AND J. McNAMEE ON

The starting differences, multiplied by 107, are

d2,z( d’z(3) _ ;d%2(3) d?z(3)

5 [
e = 098334, 0T 0975, 8O- =100,
and the first four rows of the computation are
diz dzz dz2z b d?z d?z
— — — i 2 R 254 .
X z w dx? 9 dx? a* dx? 'l: x5e dx? x40 dx?
0-0 000000000 000000000 0000000 00000 000 00000 000
0-1 099833417 099833417 —0998334 9975 —100 00000 000
0-2 198669331 1986 68500 — 1986693 19850 —198 . 9975 — 100
0-3 295520209 295516890 — 2955202 29527 —295 ¢ 39800 —398
. ‘39800 398
>.g. using (12 z(0:3) == 2955 16890 - .

The use of the converted Taylor series made it unnccessary to cstimate ahead in this
example. The Taylor serics is, however, quite rapidly convergent herc and the higher
difference columns taper off satisfactorily (about two digits from one column to the next).
Less satisfactory tapering will frequently be encountered in solving non-linear equations.

As a counter-example, we cite the non-linear equation

d2
dx
This equation is satisfied by the Jacobian elliptic function cn (x, k) when the modulus &

has the value 1//2; the function is meromorphic, the pole nearest to the origin being at
x = 1K', where K’ = 1-85 .... The Taylor series of d2z/dx? is
d2z 3 27 441 11529 442827

B R L T T R A TRt T R

§+z3~ 0, where 2z(0)-=1, 2z'(0)=:=0

Near the origin, the tenth difference appears to be of the order 4 42827h'°, and evaluation
or estimation of the differences will be difficult even with an interval of == 0-1. Suppose,
for example, we attempt to evaluate sixth differences from the first three relevant terms of
the factorial series, i.e. from the three terms

79441 —11529h2(myy -3) 4- 4 42827h% (myy + Fomey - 135%) -
With m = 0,1, 2, the three terms sum to
413 363 235

and for larger values of m the truncation crror of the factorial series is apparent. Since the
Taylor series is convergent up to x = 1-85, it may appear surprising that the truncated
factorial series fails so drastically to evaluate sixth differences in the range x — 0-0 to
x = 1-0. In this instance, the differences can be evaluated from existing tables of the
function cn, or directly from the Fourier series (in standard notation)

dz 16m 2 aZq"'¥(1 —cosa,h)3cosa,x
86d zcn (x k) K]C nZO q ( ]_ |_q271+1) 77@7"’ n o (n,{_%) K'

The sixth differences for x = 0-0 (0-1) are found to be

x 00 01 02 03 0-4 0:5 0-6 0-7 0-8 0-9 1-0
10%%% 413 362 228 55 --105 --212 —250 —230 —173 —103 —39


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SYSTEMS OF LINEAR DIFFERENCE EQUATIONS. I 79

and the rapid variation of the differences explains the failure of the polynomial repre-
sentation; it is also clear that estimating ahead would be very difficult if this interval were
used. With z = 0-05, the sixth differences are reduced to O(7 x 10-6) and a step-by-step
computation becomes practicable. Even with this interval, the factorial series (truncated
as above) fails to evaluate the sixth differences for values of m greater than 4 (x > 0-2);
the differences, though now small, still vary rapidly.

Clearly, step-by-step computation compares unfavourably here with the alternative
computation by means of the rapidly convergent Fourier series. The point we wish to
emphasize in example 3-11 and the counter-example is that the factorial series helps us to
decide whether a step-by-step solution of a given equation is practicable; if it is, and if no
better method is available, the series enables us to choose a tabular interval appropriate to
the accuracy required ; sometimes, we can go further and evaluate (in advance of the main
computation) a chosen small difference throughout the required range or a part of the
range.

3:2. Linear initial-value problems of second-order equations

A very simple example will serve to illustrate the main point with which this section is
concerned. Let us suppose that we wish to determine the decreasing function e* from the
differential system

2

(%;——z =0, z(0)=1, z'(0)=-—1. ' (15)
If we approximate to the differential equation by the second-order difference equation
(cf. (7) and (9)) 32(1_%235)“ zi—hévzi =0, (16)

and if we then write the difference equation in the equivalent form

2
(Ez—g%;——:l%l E+ l) z;=0 (E=ehddx),

it is clear that (16) is equivalent to the two equations

Ziy1—pz=0 (a), zin—(1p)z;=0 (b), (17)
p being the larger root of the above quadratic. The decreasing solution of (16) can be
computed readily by means of (174) ; (16) itselfis not a practical equation for the decreasing
solution, since the inevitable round-off errors will be magnified by the increasing factor

in the operator. :
The solutions of (16) are ~ = = 7, = e*rinp

and the value of #d/dx atx = 0 for those solutionsis +1Inp;e.g. withs = 4,Inp = 0-50006....
Hence, the decreasing solution of the difference equation cannot be obtained from the starting
data appropriate to the decreasing solution of the differential equation.

This illustration brings to light two practical points which will guide us in the numerical
solution of more complicated equations: (i) before we begin computation, we seek to
exclude the increasing solution by factorizing the difference operator; (ii) we ignore, at the
outset, the initial conditions appropriate to the decreasing solution of the differential
equation and accept the initial conditions appropriate to the decreasing solution of the

difference equation.
10-2
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80 W. G. BICKLEY AND J. McNAMEE ON

If the decreasing solution of the difference equation is an acceptable first approximation
to the solution of the differential system, and if we then seek to improve this approximation
by subsequent inclusion of higher differences, the increasing solution of the difference
equation is admitted and must be controlled. Control is difficult, and will occupy us later;
for the moment, we shall ignore higher differences and consider only second-order dijference
processes.

The basic operator for initial-value difference systems is of the form /—S5*4, where 4 is
a diagonal matrix and the simplest forms of first- and second-order problems are

(I—-S*A)z — £ (18)
and (I—28* A+ S*2B)z = f, (19)

where fis a known column and 4 and B are diagonal ; in (18), f has a single non-zero element,
Jf1, and in (19) f has two non-zero elements, f; and f,.
It will be convenient to express the operator in (19) as a product of two non-commuting

factors; we write I—-28%4 4 8%2B = (I—-S8*C) (I—S*D), (20)

where C and D are diagonal. Denoting the non-zero elements of 4, B, C, D, by g, b,, c;, d;
(t=1,2,...), we have ttd =20, cd_ —b, (21)
There are 27— 3 equations to determine the relevant 2n—2 elements ¢, d,, and this leaves
some freedom of choice in the determination. We shall suppose that the successive quadratics

p2—2a,p+b;, = 0 (21aq)
have real roots, p; and p! (p; > p;). One convenient choice is

0, =p0 dy=pi, (22)
the remaining values being determined in order from (21). If the g, and ; do not vary too
rapidly in the range considered, each element d; is greater in absolute value than the corre-

sponding element ¢;.

A second choice is , ”
Cpa1 = Pty Gyy = P15 (23)
the matrices of (19) and succeeding equations being of order z; the ¢; are now greater than
the corresponding d,.

(Note. The choice of coeflicients in (22) and (23) can be motivated by consideration of
a similar but simpler process, namely, a sequence of approximations to the roots of the
quadratic equation x2—2ax b = 0. We suppose that the roots of the quadratic are real.
Let some value ¢, be chosen and let ¢; | be determined by the forward process

b
o1 = 5 o
If p is one root of the quadratic, then
_ b _plp=c)
Pl = ’0——2a~ci T 2a—¢°
. —¢;
ie. '%—:_i—l = %Ciﬂ.
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Since 4 is the product of the roots, the coefficient of ¢;.; on the right i1s 1/p’, where p’ is the
second root of the quadratic. Convergence of the sequence ¢; to p requires that p’ should be
the greater root and p the lesser root.

Alternatively, let some value d,_; be chosen and let d;_; be determined by the backward

process d_, = 2a—bjd;
then p—diy = p—2a+bld,
i p—diy b
1.e. o—d

and convergence of the sequence d; to p requires that p should be the larger root.

If one starts with an approximation to the wrong root, the sequence oscillates violently
and eventually crosses over to the correct root.

Similar considerations apply to the matrix-factorization process of the text if the ¢, and
b; do not vary too rapidly. The choice of coefficients in (22) or (23) coupled with the equa-
tions (21) ensures that at each step the process is held stable.)

We ignore the initial values on the right of (19) and consider instead two specialized

problems. Writing 2 — (I—-S*D)w , (24)
in (19), we have (I-S*C)w =1. (25)
We choose the components of f in (25) to be 1, —¢;, 0, 0, 0, ...; the components of w are

then 1,0, 0,0, ... and z is determined by (24). By means of the first factorization, the larger
(variable) root is isolated. The second factorization permits the isolation of the smaller root,
and the solution of the original initial-value problem can be achieved as the sum of two
simpler initial-value problems. Itis easily verified that the choice of the initial-value vector
fin (25) determines the initial values of z to be 1, 4.

The backward factorization implicit in (23) is equivalent to a reverse computation of
(19) from starting data at x, and x,_;; but the factorization process may be more con-
venient in practice in that it can achieve a more complete isolation of the decreasing solution
and requires only one starting value.

We illustrate the factorization technique by means of the differential equation

k?d?z/dx®+ h%q(x) z = h*f(x) (26)
and its difference equivalent
6‘2z+h2(1 +3—2—134—+...) g(x) z = h2(1 +§—~54—+...)f(x)
12 240 12 240
which we write in the form
vz[(l +’f1%l)zl+l SV higz, = /z2(1 +%~§6+...)ﬂ+%34gﬂiw (27)

the first term on the left being written as a backward difference since the equation will be
used to determine z;,,. Equation (27) can be expressed in matrix form using the notation:
@ for the diagonal matrix whose elements are h%g;, v for an initial column whose elements
are determined from the initial values and the f; (the mode of formation will be clear from


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

82 W. G. BICKLEY AND J. McNAMEE ON

the numerical example below), and t for a truncation or correction vector which contains
fourth and higher differences of ¢z. In this notation, (27) becomes

(I—S8%)2 (I+Q/12) 2+ 5%Qz = v +t. (28)

The correction vector cannot be taken into account until a first approximation has been
obtained and we temporarily ignore it. We can then obtain by inversion

2 — (I+Q12)" (I—8%)~* [v—S$*Qz]
which is a variation on the summation method. Alternatively, we can write (28) in the form
[[—28*(I—5Q/12) (14 Q/12)"'+85*2] ([+Q/12)z = v+ t. (29)

Equation (29) is a matrix formulation of the Numerov (1933) process and is a form suitable for
use with the factorization algorithm above. Thisis illustrated numerically by example 3-21.

Example 3-21

To determine the decreasing function #*K(x) from the Bessel equation

d2z 1

in the range x = 2-0 to x = 50, the initial data being
z(2) = 0-1610703, z'(2) =—0-1575327.

We take the tabular interval to be £ = 0-5. This interval would generally be considered
large for a function of this type, since we are attempting to evaluate a decreasing solution
in the presence of an increasing solution of the same equation and the singularity of the
decreasing solution is only a few intervals away from the starting point. A large interval is,
however, desirable in an illustrative example, since it enables us to exhibit clearly the
truncation error and the disturbing influence of the singularity.

The component matrices encountered in the computation are diagonal matrices or
column matrices, and to economize space the elements of these matrices are recorded in
columns in tables 1 and 2.

The backward factorization of (23) is used, since we wish to obtain the decreasing solu-
tion. Comparing (19) and (29) and regarding (1-++%Q) Z as the variable in (29), we have

24 =2(I-5Q/12) (I+Q/12)"'  (B=1),
and the relevant quadratic of (214) is

p?—2:2521008p+1 = 0,
ie. p = 1-6437274, 0-60837 34.

The elements of the diagonal matrices C and D in the factors /—S$*C and I—S§*D can
now be obtained from (21), and they are recorded in the second and third columns of
table 1. If the truncation vector t is neglected, we need only the factor I—S$*D; we use (24)
and then multiply the solution of (24) by the diagonal matrix (/4 @/12)~!. Since the initial
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value z(2) is to be 0-16107 03, we multiply by a suitable constant to obtain the solution of
the difference equation—recorded as solution 1 in table 2. The discrepancies between the
solution of the differential equation and the solution of the difference equation are recorded
in units of the seventh decimal.

TABLE 1. COMPONENT MATRICES

24 C D I+

— — — 0-98046 88
2-23904 37 1-6273105 0-6117332 0-9800000
2-24489 80 1-6346995 0-6101985 0-97974 54
2-2480803 1-6388109 0-60926 94 0-9795918
22500000 1-6413101 0-60868 99 0-9794922
2:25124 62 1-6428728 0-6083734 0-97942 39
2-2521008 1-6437274 0-60837 34 0-9793750

TABLE 2. SOLUTION 1 AND SOLUTION 2

107 x 107 x
z 107 x z 107 x LY P sigik
x solution 1 xKy—z solution 2 xKy—z 240 L 240 P
15 — — 0-26184 14 159 — -
20 0-1610703 0 0-1610703 0 — —
25 0-09857 92 9 0-09857 87 14 16 16
30 0-0601685 21 0:0601673 33 —18 —18
35 0-0366648 14 0-0366625 37 -17 —-17
4-0 0:0223198 -4 0-02231 60 34 —12 —12
45 0-0135797 —-35 0-01357 86 —24 — 8 - 8
50 0-0082619 —83 0-00825 50 —-14 - 5 -5
55 — — 0:0050172 -15 o -
6-0 — — 0:00304 93 —22 — —
g=—1+1/4x2

Itis difficult to improve this solution by inclusion of higher differences since the truncation
error near the starting point cannot easily be obtained by difference techniques. We can,
however, verify that the discrepancy is of the order of the fourth differences of 4%¢z/240.
To this end, we compute a second solution in the range x = 1-5 to x = 60 with the same
tabular interval. It is unnecessary to record the computation; the solution obtained is
recorded as solution 2 in table 2, and from this solution we compute the fourth differences
of gz. The large discrepancy at x = 1-5 is probably to be attributed to the influence of the
singularity.

The accuracy achieved here is due mainly to two factors: (i) the matrix factorization
achieves a complete separation of the increasing and decreasing solutions of the difference
equation; (ii) the Numerov difference operator on the left side of (29) is a very good approxi-
mation to the differential operator, and the two solutions (increasing and decreasing) of
the difference equation are quite close to the corresponding solutions of the differential
equation. The efficiency of the Numerov approximation is made more evident by com-
parison with the method of § 3-3 in which the Numerov operator is replaced by a simpler
but less accurate operator. '

We shall indicate in the next section how the solution of a truncated difference equation
can be brought closer to the corresponding solution of the associated differential equation,
provided that the singularities of the equation are a reasonable number of tabular
intervals away from the segment in which the solution is to be determined.
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84 W. G. BICKLEY AND J. McNAMEE ON

3:3. Linear equations with nearly constant coefficients
We consider the typical equation
d?z/dx?+q(x)z=0 (a<x <), (30)
where q(x) = —1+7r(x)

and r(x) is small compared with unity in the range a < x < 4. This equation can be written
in the difference form

32 34 h’2 }ZZ
212, ]2 o o 45y —
(08 =R%) 2= —h [le 240, ("2~ 9400 ( )

(31)
sixth and higher differences being omitted.

The operator on the left of (31) has constant coeflicients; if the terms on the right are
neglected, the equation possesses solutions which are analogous to the positive and negative
exponentials. This suggests that we employ a change of variable which is familiar in the
theory of asymptotic solutions. The simplicity of the operator in (30) enables us to dispense
with matrix notation; but it is desirable to explain first a notation which is sufficiently
general to embrace (27) and (29) as well as (31).

The term 0?z; on the left of (31) may be replaced by V?z,,, and thus is represented by
(I—S8%*)2z; the term /'2(rz), is represented by Rz, R being a diagonal matrix whose elements
are h'%r(x;). We now introduce the change of variable

z=(I+2Z)w, (32)
where (02—h?)w, =0 (33)
and Z is a diagonal matrix whose elements are small compared with unity. Making use
of (33), we can write equation (31) as
({—=S*)2Zw—h"25%Zw = v—R"2[S* + & ([ —S*)2 ] R(I+Z) w+t, (34)
where v is the starting vector which ensures that the first two equations are identities, and
the truncation vector t embraces terms of the order §*z;.

Equation (34) is merely another way of writing (29), and the device of using a diagonal
matrix Z as an auxiliary variable can obviously be used in conjunction with the earlier
equation. The discrepancy between the variable w of (34) and the solution of the differential
equation is greater than in the earlier treatment which completely incorporated second
differences in the first approximation. This disadvantage is offset by the advantage that the
solution w can be written down at once; we have

w; =cp~¢H (1=1,2,...), (35)
where ¢ is the prescribed initial value at the starting point and p is the larger root of the
quadratic P2 (2 h?) p+1 =o. (36)

This simplification enables us to write (31) in the recursive form

&’ h'?
2 n- 2 — 2 ,
{5 2] e wntam -l g
where 8%, = i —20fi+ Py
We illustrate this device by using again the Bessel equation of example 3-21.

(1+2)];i+0(0%z),  (37)
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Example 3-31

To find the decreasing solution x*K(x) from the equation
4z
St (12 -0

in the range x = 2:0 to x = 4-0, using the initial data of example 3-21.

We use a smaller tabular interval here, namely % = 0-2, since the first approximation
w does not incorporate the complete second differences of the differential equation. From
the run of the fourth differences in the preceding example, we expect that the fourth
differences of #2gz/240 with the smaller interval £ = 0-2 will be about 20/(2-5)%, i.e. about
0-5 in units of the seventh decimal; hence we should be able to obtain about 6 or 7 decimal
accuracy if fourth differences are neglected. The initial data can be used to obtain a second
starting value at x = 2-2:

z, = 01610703, z, = 0-1324073.

If we insert the value of 4’2, the difference equation (37) becomes

|:l+ Z+I]Z N 305 _ |:p+8’2:|r+0 8,4Z)
299 299 299 299 299

where p = 1-22140 36.
The equations to determine the Z; can be sufficiently illustrated by displaying the first
two and last two equations:

1-:00014 52Z, —2-48971 662, 1-49213 85Z, = —0-00256 70,
1-0001237Z, —2-4900537 Z,+ 149208 45Z, = —0-00215 44,

...........................................................................

1-00005 79Z,,—2-49103 86Z, -+ 1-49193 46Z; — — 0-00095 38,
1-00005 23Z,, —2-49115 95Z,, 4 1-49192 29Z, = — 0-00085 57,

where Z, =0, 1+Z,= (—)-1—:30—27%9—,7—:} == 100405 12.
The values of Z and of the solution z are given in table 3.
The main interest in the numerical solution is the problem of control in passing from

the decreasing solution of the difference equation (33) to the decreasing solution of the

TaBLE 3. COMPUTED VALUES OF Z AND Zz
(All function values have been multiplied by 107.)

x 2:2 2:4 2:6 2-8 3:0

Z 40512 75182 1052 03 131461 1546 28

z 1324073 10878 02 8932171 733247 601704
% Ky—z 0 0 0 2 2

X 32 34 36 3-8 4-0

VA 175223 1936 55 210249 2252 67 238931

z 4936 33 404885 332031 272244 223191
2 Ky—z 1 - 1 1 1 3

z; = c(1+2Z,) p-t, ¢ =0-1610703.

11 Vor. 252. A.
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difference equation (37). The problem does not appear to be acute here, but it exists.
When r(x) is small, a satisfactory approximation to the left side of (37) is

Zi = p(2+h"?) 24 pPZ;
and the complementary function of the equations which determine the Z; can be estimated
by equating the above cxpression to zero; we find

Z, ~ g, wherc o=1,p?%

and one of the complementary functions increases more rapidly than the solution for Z,
which has been recorded above (p? ~ 1:5 when £ = 0-2). The simplest test for control is
to treat two of the computed values of z as exact and start a new computation from this
point. Suppose, for example, a new computation is started, treating the computed z(2-4)
and z(2-6) as exact. The starting values of Z arc
893271 893271
“ 10878027 " s9og16 V02981
A significant figure has been lost in computing Z, (which should be 0-00298 00) and we
cannot expect more than six-decimal agrecement between the two computations; but we
retain seven decimals to test whether the round-off error increases. Denoting the new
computed values of the solution by z;, the discrepancy between the two computations at
subscquent tabular points is
X 2:8 30 32 34 36 38 40

107(z;—2z) 4 5 6 7 9 11 15
The agreecment between the two computations is satisfactory; but the discrepancy appears
to beincreasing, and this increascis probably to be attributed to the complementary solution.

In the present calculation, we were able to ensure that the contribution from fourth
differences was negligible for the interval chosen. Without this control on the computation,
it appears likely that catastrophic failure of the type familiar in the misuse of asymptotic
series may supervene.

If the device of an auxiliary variable is used in conjunction with the factorization method
of the previous section, the task of controlling undue increase or decrease of the solution is
considerably eased, since the auxiliary variable is not required until the fourth and higher
differences are to be incorporated.

II. BOUNDARY-VALUE PROBLEMS OF LINEAR
ORDINARY DIFFERENTIAL EQUATIONS

1. INTRODUCTION

Part II is complementary to part III: some concepts and techniques are introduced here
which will be employed in a wider context in part I1I.
We shall make considerable use of the matrix operator

D? = 2] —§—8%,
the bold symbol being used to distinguish the matrix operator from the differential operator

D = d/dx. With this single exception, we abandon—here and in later parts-—the bold
notation which was used in part I.
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The matrix D? is ideally adapted to the solution of difference equations when the boun-
dary values are prescribed, and we shall employ it here to treat boundary-value problems
in a strip of n+ 1 intervals, the points 0 and z-+1 being boundary points [£ = 1/(n+1)]. If
the terminal values z, and z,,, are zero, the action of D? on a vector z is to replace each
element z; (1 = 1, ...,n) by —02%z, i.e. by its second difference with sign changed. No loss
of generality is involved here; in the solution of difference equations, we can always reduce
the terminal values z; and z,,, to zero by adding suitable terms to the right side of the
equation.

For other types of boundary conditions, the matrix D? is not directly useful; but it is
sometimes possible to take more general conditions into account by modifying the border
elements of D? (cf. §2-1 of part III). In the solution of differential equations by difference
methods, the replacement of differential boundary conditions by difference expressions
introduces an element of approximation which is always diflicult to assess; this is particu-
larly true in higher-difference approximations. It is, however, apparent from general con-
siderations that a difference approximation to the solution of a linear differential system is
equivalent to a representation of the solution in terms of some set of discrete base functions.
From this point of view, it is often prefcrable to by-pass the difference approximation com-
pletely and to represent the solution in terms of continuous base functions, and recent work
has emphasized the value of this type of approximation; for example, the utility of Cheby-
shev polynomials has been amply demonstrated, notably by Lanczos in a number of papers
and in his book (1957) and by Clenshaw (1957).

In this part, we illustrate both types of approximation. If the representational aspect
is borne in mind, the two types are seen to be more closely related than is sometimes
suspected ; but they differ considerably in technique, and technique is of no small import-
ance in numerical analysis.

1-1. Simple difference approximations to differential equations

The properties of matrix difference operators have been explored in considerable detail
by Rutherford (1947, 1952) and Todd (1950). For our present purpose, it is sufficient to
record that the cigenvalues and eigenfunctions of the nth-order matrix 27— 85— S$* are

A, = 4sin? (ymmh), 71, = (2h)}sin (pmmh);

here, p and m run over the values 1 ... 7, and the matrix 7, is its own inverse.
The eigenvalues of D? are confined to the range 0 < A,, < 4, the smallest being

4sin? ({mh) ~ h%m2.

The matrix D? is not itself ill-conditioned unless very small values of % are used. Ill-con-
ditioning may, however, arise in a less obvious form in the solution of difference equations.
Consider, for example, the equation

—h*d?z/dx? 4 h%qz = K?*f(x), z(0) =0 = z(1),

where ¢ is constant and the boundary values z, and z,,, are zero. The simplest discrete
approximation to this equation is
D2+ £2qT) 2 = I,

11-2
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the components of z and f being z(x;) and f(x;) ; we use the same symbols for the continuous
functions z and f and their discrete representations. The matrix on the left of this equation
and the inverse of the matrix can be written in the spectral form

z (Am +h2q) T 7': and E (/\m -+ th)*l rmrrﬁ;

m

r,, 1s here an eigencolumn and 7% its row transpose. The matrix is singular if, for any m,
—h%q = 4sin? (dmnh).

If ¢ is positive, no difficulties arise, the equation being of exponential type. If ¢ is negative,
the severe conditions _g<n? or —g> 4R
exclude the possibility of singularity or ill-conditioning. If, however, 0 < —h%q < 4, ill-
conditioning need not, in general, be feared for practical values of #, provided that —/A%g
is not close to an eigenvalue of D2. When small values of /4 are used, the density of the
eigenvalues on the strip 0 to 4 increases, and the point /%¢ is more closely enclosed.

The above conditions indicate qualitatively the phenomena to be anticipated in the
discrete analogue of the more general equation

—d?z/dx?+-q(x) z = f(x),

but we can obtain more precise guidance from the comparison theorems of the Sturm-
Liouville theory; the conditions derived above are in fact analogous to the exclusion
theorems of the Sturmian theory (see, for example, Ince (1944)).

1-2. Higher-difference approximations

Higher-difference approximations can be obtained by using a power series in D?; in
effect, this amounts to using eigenvalues which are better approximations to the eigenvalues
of the differential operator d?/dx?, the eigenfunctions remaining unchanged. Alternatively,
we can discard the matrix formulation and employ any convenient basis of discrete or
continuous functions.

The powers of D? or any similar matrix are closely related to difference operators; they
may even yield exact differences of all even orders when the operand is an eigenvector of
the operator, and it is sometimes practicable to make use of this property by expanding an
arbitrary operand in terms of the eigenvectors. In general, however, the end differences of
D?z are incomplete when z is an arbitrary vector. For example, the square of D? is

Dt = (2] 8 —§%)2 = 61— 4(S+5%) 452 §%2 [, 1

nn*
If this matrix operates on a column z, the fourth differences of z,, z,, and z,_,, z,, are in-
complete. For example, the missing terms in the fourth differences of z, and z, are

z,—4zy+z_, and z,

The missing terms (some of which will in general be unknown) can be incorporated in a
correction vector and taken up iteratively; we shall ignore this correction here since it
involves merely a trivial modification of the procedure.

We now consider the equation

—h2d?z/dx?-+q(x) z = f(x)
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which may be written in either of the finite-difference forms

—(32—%+§% ...)z—i—q(x) 2= f1¥),

82z+(1+§—;- %+ )q(x)zm( -I——(E—...) ().

If the first form is used, the corresponding matrix equation is

> | D* DS
g 2 _ —
N (D ICRETRES )”QZ J
§ S @ being a diagonal matrix whose elements are ¢(x;) and z, f, are column vectors with
OH elements z(x;), f(x;). If z’ is the solution of the equation
e ,
s o (D24Q) 2’ =,
aale) and if z = z' 47, we find
=w D2 D¢

) ~ (D* DS
D+ Q)1 = (Tg+g5+-) /= @2) (g +g5+-) 7
Neglecting the term in # on the right side, we find
D? D4
2 = - . ’
2= D7+ Q1| S~ (Tg+gg+ ) - @) |
If the second finite-difference form is used, the corresponding matrix equation is

Dz D¢
2 ——— — ——— — ol e e e
Dz+(1 12 940 )Qz (1 12 )f

Writing z = z" +¢, where

PHILOSOPHICAL
TRANSACTIONS
OF

wes1-B)ec = 1-B)s

we find |:D2(l~—)-|—Q:|e— (%Jr )(f—Qz")+(%+...)Qe.

Neglecting the term in ¢ on the right side, we obtain

=[-8+l To R -(Gar- -0

I B

—

S

5 —~ The second approximation has ostensibly a smaller difference correction, but the essen-
= tial @ priori uncertainty in both these forms of difference correction is the neglected terms in
= O n or ¢; this term can, however, be estimated a posteriori and used in a further step.

E 8 An alternative technique is to use any convenient and admissible set of base vectors.

Suppose, for example, we use a discrete basis. It is clearly possible to express any column
vector in terms of this basis and of the reciprocal or adjoint basis, and it is shown below that
a term of the type Qz (Q, a diagonal matrix; z, a column vector) can be treated without
difficulty. In thesolution of differential equations, we also require expressions for a sequence
of difference operations on any vector of the basis, for example, the truncated sequence
ot &8

12790
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yields an approximation to the second derivative of a base function at tabular points. The
use of such a sequence implies some assumption defining the continuation of the base
functions outside the segment in which the differential equation is to be solved. The
simplest assumption we can make is that the continuation is periodic and it is sometimes
possible to ensure this by a change of variable in the original differential equation.

The admissible sets of base functions are restricted by the requirement that the sum of
components defining the solution z must satisfy the prescribed boundary conditions.

It is convenient to introduce here some notation which we shall use frequently in the
sequel. We denote the basis functions by 7, (¢ = 1, ...,7) and the adjoint basis by p,. The
r; may be supposed to be displayed in columns and the vectors p, in rows; and both sets are
normalized so that the scalar p;7; is unity for i = j, i.e.

pir; = 3:‘;'-

The components of the vector z in the basis 7, are denoted by z; and the sum
n
2 1
i=1

denotes a vector. To avoid confusion with a similar notation in tensor analysis, we indicate
sums by a summation sign; we do not use the more convenient convention of summing over
the repeated index, since this convention is apt to suggest a scalar. To obtain a similar
representation of the vector @z when @ is diagonal, we notice that we can write

Qz = lzzi Qr, = gﬁiri'

The coeflicients §; are evaluated by forming the scalar product of each side of the equations

with the row p;, 1.e. 22:p;Qr; = f; = 3 z,q;;.

The matrix whose elements are g;; define the representation of ) in the basis 7;, p; and we
can write
Q= 2 9i; "iPji-
i

This sum denotes a matrix; each component matrix 7,p; (of order n X n) is multiplied by the
appropriate coeflicient z; and the summation embraces n* component matrices.

Similar notation is employed in part III.

To illustrate these points, we repeat briefly here an example which is to be considered in
more detail in another paper, namely, the solution of the equation

—d?z/dx?+q(x) z = f(x), 2(0) = 2(1) =0,
in terms of the eigenvectors 7; of the matrix D2. Equivalently, we may say that the basis is
the set of continuous functions
sin (max) (1 <m<n),
where & == 1/(n--1), but the components of a vector in this basis are defined by a summation
and not by an integration, i.e. the coefficient z,, is defined by the scalar product

. PmZ-
The equation becomes

d?r
- Z Zm dx"?B =+ z Qij ripj z Zintm = Z‘fm iy
ij m

m m
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We may write _dE,  d?
dx?2 —  da?

and on pre-multiplying the equation by p,, we have

m?n?z,, f]—g TmpZp = for

sin (mnx) = m?n?r,,

Example 1-21

As a numerical illustration of the above method, we seek the lowest eigenvalue b, of the
even periodic solutions of the Mathieu equation

d?z/dx?+ (b—tcos?x) z = 0, z(0) == z(2m).

The analytical solution of this problem is studied in Morse & Feshbach (1953) and it is
shown there that the eigenvalues 4 can be expressed as a power series in ¢, the series for the
even periodic solutions being (p. 1017)

t2

by = M-t
84+%

— +0(#4),

b, =+ jr—2 5+ b]+0t‘* (n+ 0).

R[(n—2)2+—;-t— . (n+2)2 +;t
The above expressions are obtained by treating x as a continuous variable in the range 0

to 27. The method of § 1:2 is convenient here and may be expected to give quite accurate
results if the even periodic basis

Tym = COS (pmh)  (ph = 0,h,2h,...,2m; m = 0,1, ...,7/h)
is used. The eigenvalues b are given by the determinantal equation

|(‘[)2—~b) amp+tqmp| =0

where ¢, are the elements of the diagonal matrix cos? ( ph) in the basis 7,
We shall simplify the exposition by choosing large values of £ in order to keep the order
of the determinantal equation small. Taking first # = m, we have two base functions

cos (pmm) (m=0,1;p=0,1,2).

Since cos (mm —mx) = cos (mm+mx), it is sufficient to consider only the range 0 to 7. The
basis can be made self-adjoint by adopting the trapezoidal definition of the scalar product
of two functions f and g, namely

T(f.g) = 3/o80+ 181 +/28a+ o+ 5180

With this definition of scalar product, the normalized half-range vectors are (reading by

columns) sl 1
_[1 —1]

o-[! 1]

the dots denoting zeros. The determinantal equation is
t—b

and the matrix @ in this basis is

1-+t—b IZ 0, ie bt 14t
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92 W. G. BICKLEY AND J. McNAMEE ON
Using now the interval # = 7, we have three eigenfunctions, and the half-range basis is
/2 1 $./2
B=1y1/2 . —1/2].
b2 -1 b2
The representation of @ is
b
Q = 1

[T
[

and b is determined by
(140 [(4—8) (4-+3t—8)—3] = 0,

the smallest eigenvalue satisfying
12

[ VL
o 44-+L—b,

—

ol

We shall employ two finer intervals, namely £ = 47, 17, since the above approximations,
though of the right order, are fairly crude. It will be sufficient to record only the @ matrices
for these intervals.

—1— . 2 . .
% . %J2 . 2 % %N/ %:
. 2 . 1+./2 ' ) )
Q%ﬂr 1 /9 * 3 4\/ 3T Q}n: 7}\/2 % . %«/2
| N . . .
e VI
We can now write down two further approximations to 4,:
2 1 $t—b
N PP SR T 2 0
hdr b= | g, g (0 b )
o !
64 (1150 by) (41 30— by) (91 515y
2 1 $—b (5t —by)
S PO S T 2 2zl — 0 -
b= b g, g (6 By AT (01
T ¢ 1
128 (1+3t—by) (4-+4t—by) (9+3t—by)
4 1 3t—b,

128 (1F3—by) (4+30—b)) (01 b)) (16+50—5y)"

The above polynomial expressions for b, are of the same form as the series expressions quoted
earlier but there are discrepancies in detail. The following table shows the values of b,
obtained for the four intervals chosen when ¢ = 4:
interval 7 3w im 37
b, 4 117 1-63 1-539

1 We may note here that ¢;; = 0 unless ¢ and j are both odd or both even. This simplification occurs also
in the analytical solution (cf. Morse & Feshbach).
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These approximations oscillate about the true value 1:5448 ... but the amplitudes of the
oscillations appear to diminish as the interval decreases.

We should expect less accuracy in computing the higher eigenvalues by this technique.
The approximations to the third eigenvalue when ¢ = 1 are:

interval {7 dm =

b2 4-56 4-78 4-52
The true value is about 4-51.

ITII. CLOSED METHODS FOR THE SOLUTION OF LINEAR
PARTIAL-DIFFERENCE EQUATIONS

1. INTRODUCTION

The remarkable success of methods of successive approximation in the solution of partial
difference equations of elliptic type has perhaps obscured the need for closed solutions. It
is a priori probable that closed rational solutions of elliptic partial-difference equations should
exist, though it is not to be expected that these solutions can be determined by the methods
of elementary algebra.

In part IIT we explore a number of techniques which lead to closed solutions of simple
elliptic-difference equations in a bounded plane region; we touch briefly on other types of
equation but our main concern is with the elliptic. All of these techniques save one use
concepts of matrix algebra and they are applicable only if the region of existence of the
governing equations is bounded by curves of an orthogonal net. The remaining technique
can be regarded as a finite-difference analogue of Bergman’s kernel function method
(Bergman & Schiffer 1953) and was in fact suggested by it; it depends on our ability to find
a number of independent solutions of the partial-difference equations which may be
termed complementary solutions. The complementary solutions are not required to fulfil the
prescribed boundary conditions, but the sum of a sufficient number of them can be made
to satisfy the boundary conditions. This method is the most flexible of the methods
described in part III but the least susceptible of reduction to an invariable routine of
operations.

The concepts of which we make use here are drawn partly from analysis and partly from
algebra and we have endeavoured throughout to acknowledge our conscious debt to earlier
workers. We have been unable to make a complete survey of the relevant literature which is
scattered over a wide range of journals, but the references we have consulted suggest that
interest in closed solutions has been sporadic. An early paper by Courant, Friedrichs &
Lewy (1928), on the partial-difference equations of mathematical physics showed thatmany
of the fundamental theorems of analysis could be directly transformed into finite-difference
analogues and thus laid the foundations for a rational attack on the associated difference
problems. Further reference may be found in subsequent papers by Stéhr (1950), Hyman
(1952) and Stiefel (1952). It seems probable that the hypercircle method developed by
Synge (1947) for the solutions of boundary-value problems of differential equations could
form the starting point for the development of analogous methods for difference equations
but we have not explored this point in any detail.

12 VoL. 252. A.
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We have not been able to trace any work which attacks the matrix equations considered
in §3 below. A superficially similar equation, i.e. the matrix equation AX = XB, was
considered by Turnbull & Aitken (1945) who give references to earlier work.

For the most part we shall be concerned with finite-difference analogues of the equations
of Laplace and Poisson and of the biharmonic equation and we introduce in the next section
some matrix operations which permit a concise formulation of the problems to be considered.
The properties and some applications of these matrices have already been explored in the
literature but mainly in problems of a single variable; see, for example, Rayleigh (1926),
Lennard-Jones (1937), Rutherford (1947, 1952), Todd (1950), Bolton & Scoins (1957).

The emphasis in part III is on closed methods but we give some illustrations in which a
potentially closed method is used iteratively. Moreover, we restrict our considerations
mainly to solutions of partial-difference equations, even though the motive behind our work
is that these solutions are approximations to the solutions of differential equations. It
appears desirable to distinguish two techniques here, namely, the technique of finding the
solution of the difference equation in a given mesh and the technique of using this solution
to obtain a better approximation to the solution of the differential equation at the nodal
points. Since the present work was begun, we have found, however, that the two techniques
are more closely related than might at first sight be supposed and that it is sometimes
practicable to by-pass the intermediate step of solving the difference equation; this point is
discussed in § 3 below and more fully in a companion paper.

The simplest type of boundary condition in difference or differential equations (i.e. the
prescription of boundary values of the wanted function) is basic in the numerical methods
of succeeding sections. We give some illustrations of the incorporation of other types of
boundary conditions for difference equations; but we have not pursued this point in great
detail, since the practical problem usually originates from a differential equation and the
incorporation of adequate approximations to differential boundary conditionsin a difference
treatment is not readily reducible to a generalized formulation such as we envisage in this
part of the paper.

2. FORMULATION OF PARTIAL-DIFFERENCE EQUATIONS AS MATRIX EQUATIONS
2-1. Basic types of bivariate equations

We shall discuss very briefly a compact formulation of the Poisson difference equation
and the biharmonic difference equation as matrix equations. Similar considerations apply
to the formulation of other types of elliptic difference equation.

When the boundary values of the wanted function are prescribed, the operator
D? = 27— 85— §* of part I maybe used. If Zis a rectangular matrix of » rows and m columns,
the operation D?Z replaces each element z;; (z+ 1 or n) by its column-wise difference
—02z;; similarly, the operation ZD? replaces each z;; (j = 1 or m) by its row-wise difference
—07z;. We have chosen the axes so that the x variation is indicated by the row suffix :
and the y variation by the column suffix j, i.e. x is measured vertically downward, y hori-
zontally to the right. ‘

The sum of the two operations, namely

D2Z+4ZD2,
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yield the complete second difference (with sign changed) of all elements z; which do not
lie in the border of the matrix Z, i.e. in the first or last row or column. It may be noted
that—as earlier—we choose to symbolize the central-difference operator — 4?2 rather than
d21in order that D2 may have positive eigenvalues; suffixes such as n or m above may be used
to indicate the order of the matrix D2, but we generally omit the suffix since there is little
danger of ambiguity on this score.

The missing entries in the incomplete differences of the border elements are the pre-
scribed boundary values which will be entered on the right side of an eventual equation,
the left side being reserved for operations on unknown quantities. It follows easily from the
above that the central-difference equation

—(024+02)z; =0 (t=1,..,n55=1,...,m) (1)
and the prescribed values at the nodal points z;, z,.1_;, Zigs Z;, n+1 Can be formulated in the
matrix equation D2Z 1 ZD? — F 2)

where the border elements of /" are the prescribed values and the interior elements are zero.
If the inhomogeneous term f{x;, ;) is added to the right side of (1), the nodal values of f are
entered in the appropriate locations in the matrix F of equation (2).

Somewhat more general forms of (1) are

- [afazij +§y2 bzij] = f(x;, ?/j) 1
and — [ad2+4b02] Z;j = f(%,y j):J

where a = a(x;) and b = b(y;) ; when the region of definition is a rectangle, the equations
(3) can be replaced by the matrix equations

D24Z+ZBD? = F |
and AD?Z+ZD?B = F,)

(3)

(4)

the matrices 4 and B being diagonal. If the coefficients @ and 4 in (3) are functions of both
x and y, concise formulation is difficult; we may then write out all the equations in some
suitable order (as in the big matrix of § 3-1) or use the more general method of § 6.

The incorporation of other types of boundary condition necessitates modification of the
basic operator D2. For example, if the boundary conditions at z); and z,,, ; are of the form

()

Zy; = Q121519295+ g,
z

n+l,j anznj+an—lzn—1,j+an+]:
the fore-operator D? must be replaced by

n—1"n—1,n

and the inhomogeneous terms a, and a,,, are entered on the right of the matrix equation.
Clearly, the matrix formulation implies some restriction on the admissible types of boundary
condition. '

These illustrations bring to light some points of general interest. It is important to
observe that a matrix-difference equation represents not merely a difference equation but

a difference system consisting of the difference equation and its appropriate boundary
12-2
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conditions; we cannot, indeed, formulate the matrix equation without including the
boundary conditions. We may also note that row-wise differencing, i.e. differencing with
respect to the horizontal co-ordinate, is effected by aft-operators, and column-wise
differencing, i.e. with respect to the vertical co-ordinate, is effected by fore-operators.
A minor point is that a uniform difference interval, 4, say, can easily be incorporated in
equations such as (2).

From the considerations already advanced, it is clear that the matrix originating from
the fourth-order central difference 8* = (E* — E-*)* has the structure

61— 4(S+85%) 4524 5%2,
but the boundary conditions are now more cumbersome and less easily reducible to a simple
general statement. The following conditions on the boundary element z, and on the element
z_; (just outside the boundary) typify conditions which may arise in practical problems:
Zp = 4121+ ay2y+a323+dy,
z_, =ayz,‘ayz,Fagzsta_;.
With these boundary conditions and with similar conditions at the opposite boundary,
the matrix originating from the fourth-order central difference ¢* is of the formf
D* = 61— 4(S+5%) + 82+ 85*%2+ (a) —4a,) I, + (ay—4a,) I,

+ (a3 —4dag) Iy +ay Iy +ay Ly +aglys+ ..., (7)

the ... indicating similar terms in the last two rows of the matrix. The matrix (7) is used

when the operand is a column and the transpose D** is appropriate when the operand is
a row. This representation enables us to transform the difference equation

(834‘283;/ + 8;) Zij = f(%; yj)) (8)
together with its boundary conditions, into the matrix equation
D*Z+2D2ZD?2+-ZD* = F (9)

(again we suppose a rectangular domain). The matrix D* may be of the general form (7),
but the fore and aft matrices need not be identical, and the matrices D? in (9) may be
somewhat more complicated than those encountered earlier.

The obvious method of attacking (9) is to attempt to factorize it, i.e. to write

W= A4,Z+ZB,
and seek to determine matrices 4,, 4,, B;, By, such that
AW+ WBy = A, A, Z+ A, ZB,+A,ZB,+ZB, B,

is identical with the left-hand side of (9). Two simple factorizations are suggested by the
natural boundary conditions of analysis. In the first, we take

A, = A, = 2T~ §—5%;

1 Itis convenient to employ invariable symbols D2 and D* for the second- and fourth-difference operators,
even though the precise meaning to be attributed to these symbols will always depend on the boundary
conditions. The notation does not imply that D* is always the square of D2
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and we take B, and B, to be of the same form (but not in general of the same order); it is
easy to verify that this factorization is possible when z and 02z are specified on a rectangular
boundary. The matrix 4} has the form

A? = 61— 4(S+S*)+82+S5*2 -1, — 1.
In the second factorization, we take 4, and 4, to be of the form given above, but
By =2I-8—-8*—1,,—1, , ,= By;

z and 0%z must then be specified on the horizontal edges, and xdz and #d3z on the vertical
edges. Obviously, we can achieve other simple factorizations by combining these two cases,
but the number of simple factorizations appears to be very limited.

2-:2. Properties of matrix-difference operators

The preceding section served to elucidate the importance of the boundary conditions in
the formulation of matrix-difference equations. This suggests that we may, as in analysis,
seek to obtain the solution of an inhomogeneous equation as a sum of components which
are individually solutions of the allied homogeneous equation. For example, in solving the
Poisson-type equation [(3) or (4) above], we may employ vectors z whose components
z, satisfy the difference equation

82z, = — Az, (10)

together with homogeneous boundary conditions of the type (5). The Poisson equation
involves two operators and we may expect that its solution will depend on the homogeneous
solutions for both operators. The use of homogeneous components or eigenfunctions in
practical problems depends mainly on the ease with which they can be obtained; it will
be seen that the operators of § 2-1 possess eigenfunctions which can be expressed in simple
analytical form. The properties of these and similar operators have been studied by
Rutherford (1947, 1952) and by Todd (1950) ; we record some of their results here and add
some minor results which are pertinent to our present purpose.

If we write

A =2(1—cosf)

in (10), we find z, = A el Beith,
On using the boundary conditions (5), ¢ is found to be determined by the equation

sin (n+1) 0— (a,+a,) sinnf+ (a,a,—ay,—a,_,) sin (n—1)
+(a,a,_,+aya,) sin (n—2) 0+aya, ;sin(n—3)0 =0; (11)

from this, a number of special results can be deduced. For example, if the constants a; are

all zero,
rm
/1’. e 2[1—COS (m):l (T: 1, .’.., n),

. ()
. o
zf’_n—|-lsm(n+l) (p=1,...,n).
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These eigenvalues and eigenvectors are appropriate when the matrix D? is of the form
21 —§—5%; the inverse of D? has then a particularly simple structure:

k(n+1—7) (k<j)}
Jn+1=Fk) (k=)

i.e. the upper triangle of the nth order symmetric matrix (2/—S$—5%*)"! is obtained by
writing the natural numbers n, n—1, ..., 1 in the top row and doubling, trebling, quad-
rupling ... this row downward. This result is due to Todd.

It may be useful at this point to give two elementary examples of the operator D? in
numerical work.

(i) Itis obvious from equation (12) that the matrix D? will play a fundamental role in
a numerical solution of the classical integral equation

(n+1) [(D*)]y; = ; (12)

26) = £+ [ K(x.9) 2(9) a

y(1—=x) (x=y).
(ii) Consider the numerical solution of the differential equation

%z 0z

where boundary conditions are prescribed at the two ends of the range in x and the initial
state is zero.

A solution might proceed thus. We replace the differential operator 9%/dx? by the finite
difference approximation §2/4? (the tabular interval being %), and we represent the values
of z at the tabular points of the x-range by a vector z; simultaneously we eliminate the
¢ variable by a Laplace transform. For simplicity we may suppose that the boundary con-
ditions are not time-dependent and that they are represented by a vector f; equation (13)

becomes (D244)Z = fip. (14)

To solve (14), we make use of the spectral resolution of a matrix: if the eigenrow and
eigencolumn vectors of D? are p;, 7; (p;7; = d;;), and if the latent roots are 4;, then

D? = Z AT pis

(D)1 = 3377
The solution of (14) is then 1
z=2 g bl
i p(A+p)
2= [(Dz)—l—ze—w%’ﬂ f (15)

This solution is clearly the discrete analogue of the familiar solution

or, inverting,

[e o]
2
— —fBnt
z=1z—Ya,e Pricosp,x,
0
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z, denoting the steady state. Similar treatment of the equation
7z _ o
0x2 0t

yields a solution which is analogous to the double Fourier series solution for the vibration

of strings. The fourth-order vibration equation
04 02 92
A S AT
(47—t 0 " 52

can be treated by the same technique.

(0 <x<x)

)z=0 (a,b>0)

3. METHODS OF SOLVING MATRIX-DIFFERENCE EQUATIONS

In the preceding section, we formulated a number of difference equations together with
their boundary conditions as matrix equations. In this section, we present some methods
of solving these equations, in particular equations (2) and (4), which are special cases of

the more general equation AZ+7ZB=F (16)

The matrices 4, B and Fin (16) are known matrices of orders n x n,m x mand n x m; Zis an
unknown matrix of order zn x m. The matrices 4 and B are not of course completely arbi-
trary, but the restrictions which we shall presently be obliged to impose concern only the
existence of the solution, and the methods explained in §§ 3-2 to 3-4 do not depend on any
special properties or simplicity of structure which the matrices 4 or B may possess.

It is of course clear that the matrix formulation presented in §2 is not unique nor even
the most obvious method of treating problems of this type. Before considering equation (16),
we shall outline a method of attack which has been exploited in the literature (see, for
example, Karlqvist 1952 ; Burgerhout 1954 ; Cornock 1954).

3-1. The big matrix

The big matrix—we use the term for want of a better description—is obtained by writing
down in consecutive order all the difference equations which are to be solved. The values
of the unknown function at the nodal points are united in a column vector which is operated
on by the big matrix of difference coefficients and equated to a known column vector.
There is no predetermined method of ordering the successive equations, but it is natural in
dealing with a rectangular domain to order by rows or columns. For example, suppose we
wish to solve Laplace’s difference equation for a mesh of 12 interior points arranged in
three rows and four columns, the values of the function being specified on the rectangular
boundary of the domain. If the equations for the points z;; (i = 1, 2, 8) are written in order,
followed by the equations for z,, z;, z;,, we obtain the operator matrix # of order 12:

P —-I 0 0

4 —1 0
—TI P I 0
B = , P=|—-1 4 —1
0 -1 P -7 , >
0 —1 4

0 0o —17 P

I being the unit matrix of order three. This continuant structure persists for any rectangular
array of points, provided that the unknown function is specified at the boundary.
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To invert a matrix of the type #, we notice that any polynomial in a matrix P commutes
with any other polynomial or with the reciprocal of any other polynomial in P. We may,
then, invert %, treating P as a real number in arithmetical operations. If P is of order #,
and if & is partitioned into m? submatrices each of order 7, the inverse # ! is given par-

titioned form by o {Bm—kBj~l (k=)

AT =B, By k<),
where B, = sinh (k+4-1) f/sinh ¢
and cosh = 1P.

An equivalent result was given by Burgerhout (1954).

The structure of the matrix £ is invariably of the form given above, but the submatrices
will be altered if the boundary conditions are changed. For example, suppose in the 12-
point example that the function is prescribed on the north, east, and west boundaries and
that the reflexion condition holds at the points z;; (z = 1 to 4). The matrix has the same
shape, but the submatrix P is replaced by

4 —1 0
0 —2 4

Again, if the reflexion condition holds east and south, the function being prescribed north
and west, the submatrix P is replaced by P}, and —Iin the bottom row of % is replaced by
—2I. % is now asymmetric but its inverse can be determined by the method given above.

3:2. The irrational solution of AZ+2ZB = F

The analysis given in Turnbull & Aitken (1945) for the solution of the homogeneous
equation AZ = ZB can readily be adapted to yield a solution of the inhomogeneous equa-
tion (16). The method requires that the eigenvalues and eigenvectors of both 4 and B be
available; we suppose that 4 and B are non-defective, i.e. that 4 possesses z and B possesses
m independent eigenvectors. Writing

A = RAR—I, B = SNS_I,
where A and N are diagonal matrices, we premultiply (16) by R~! and post-multiply by S;

then AW+WN = F,, (17)
where W = R-1ZS, F,= RES,
or | (4+v;) wy; = (F1)y- (18)
It is clear from (18) that a necessary condition for the existence of a unique solution is
L+vi+£0 (=1,..,n;5=1,...,m). (19)

Equation (18) can also be used to indicate whether ill-conditioned equations may be
expected when using the harmonic operator. The ratio of the largest and smallest eigen-
values is a useful measure of ill-conditioning and is convenient to use here. When boundary
values are prescribed, it is clear from (11°) that D? is a positive-definite operator, and (18)
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shows that the harmonic operator is then no more ill-conditioned than the operator D2
In practical applications, operators of the type D? are in general non-negative, but either
A; or v; in (18) may be zero. For example, if the reflexion condition is prescribed on two
opposite boundaries, it is seen from (11) on putting a; = 0 = q,, a, = 1 = a,_, that one
eigenvalue of the corresponding operator is zero. The harmonic operator is then more
ill-conditioned than if the boundary values were prescribed on all four edges. Similar
considerations apply to fourth-order différence operators.

The solution (17) or (18) is not usually the most apt method of numerical computation,
but it possesses the useful property of exhibiting the influence of each boundary point or
each nodal load on every internal point of the domain. For example, suppose that f,, is
the only non-zero element of the matrix F and that the elements of R, R~1, §, S-1, are

Ty Py Sy Oy

then, 2y = Jpg 2 Tia f“psqﬁ Tgje (20)
o, a “+v B

An immediate application of (20) is in the solution of Laplace’s or Poisson’s difference
equation for a region composed of a number of rectangles. For example, suppose that the
region is T-shaped. To simplify the explanation, we may suppose that the two rectangles
composing the T have only one internal nodal point in common. We choose some con-
venient numerical value ¢ for the function at this point and solve for the two rectangles
separately. If we add to ¢ a constant ¢, the influence of ¢’ on all the internal points of the
T-domain is determined by (20) and ¢’ itselfis determined by the satisfaction of the difference
equation at the common nodal point. The reasoning hereis perfectly general and itis obvious
that p connecting points will give rise to equations for the constants ¢j, ¢y, ..., ¢,.

Two other methods for solving (16) are given in §§3-3 and 3-4; numerical illustrations
of the three methods are given at the end of § 3-4.

3:3. Semi-rational solution of AZ+ZB = F

In the preceding solution, the eigenvalues and eigenvectors of the two matrices 4 and B
were required. An alternative solution can be expressed in terms of the eigenvalues and
eigenvectors of 4 or B.

Suppose we choose B. Denoting the eigenrow vectors of B by ¢, i.e.

JiB = Vi Jis
we seek a solution of the form

Zzz

Zl’

where z; denotes a column vector of order z and z;0;1s a rectangular n X m matrix; since there
are m columns z, nm values of the coefficients in z are at our disposal and it is thus always
possible to express any z X m matrix in this form. Equation (16) becomes

A3 z;0; ZV z,0; = (21)

Denoting the eigencolumns of B by s;, and choosing the norm so that

0;8; = 0yjs

13 VoL. 252. A.
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we have, on multiplying (21) by s;,

(A+v)) z; = Fs;. (22)
When the matrix B is of order m, the complete solution is obtained by solving m sets of
equations of the type (22). Again, we encounter the condition 4;-+v; = 0.

This method of solving the matrix equation is clearly analogous to Fourier series resolu-
tion. We may obviously extend the technique to yield an analogue of double Fourier series
resolution, i.e. we write

’ Z = 3 z;1,05 (23)
4J

where the z;; are now scalars and the 7, are eigencolumns of 4. Equation (16) becomes
2 J
The z; can be determined by reducing each side of the above equation to a scalar product.
Pre-multiplying by p, and post-multiplying by s,, we find
(Ap+vy) 2, = 0, Fs, (24)
The double resolution is of course equivalent to the irrational method of § 3-2; it will be

seen in § 6 that a resolution of the form (23) can be approached from a different standpoint
and that it can be used in a wider range of applications.

3-4. A rational solution of AZ+ZB = F

In dealing with the matrix equations AX = XA and AX = XB, Turnbull & Aitken (1945)
remark ‘It is clear that the solutions to problems I and II [i.e. the equations AX = X4,
AX = XB] are not quite final in that the problems must, by their nature, possess rational
solutions, whereas the classical forms which have been utilized are irrational. We leave
to the reader the consideration of the rational solution’.t This remark stimulated the
search for the method given below.

We can introduce most simply the concepts on which the method is based by considering
the special case in which B is of order two; the illustration will also enable us to trace the
connexion between the matrix equation and the vector equation of §3-1 in which the big
matrix is employed.

If the matrix Z is partitioned into two columns z; and z,, and if F' is partitioned into
/1 and f,, equation (16) can—in this special case—be written as

e N
bl AtbyIllz) LAl

If we write the characteristic equation of B as

B —p Bty =0
and introduce the notation

C= 42 +ph A + P

Atbpl b

the solution is [Zl] :[ 02 21]] c—l[fl],
S YRR I A

or Z = AC-\F—C-\F(B—p,I).

T A rational solution of AX = XB was given by Rutherford (1932), Weitzenbéck (1932) and also later
by Foulkes (1949).
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To generalize this result when B is of order m, we write the characteristic equation of B as
B(m):Bm___ple—l+pZBm—2__“_+(__)mpm:0’ (25)

where p,, is an abbreviation for p,,/, I being a unit matrix of order m; similar abbreviations
are used in the succeeding formulae. We also write

F, = C-F, ' ] 26
where C=Am+p A™ 1+ p, Am2 4 ...+pm.} (26)
We now seek a solution of the form
L=2Z—2Z,+2Z;—...+(—)""1Z,
. 1 2 3 (—) } (27)
with Z, = A""F,,

the leading term being suggested by the illustrative example above. We easily verify that
AZ,+2Z,B = A"F,+A""'"F| B = F+A™"'F\(B—p,I) — %l’iAmﬁFr
i=2

The form of the remainder terms on the right suggests that we define Z, by
Z, = A""?F\ By,
where the partial polynomials B, are defined by

By =Br—p, B ...+ (=)D, (28)
It follows that

A(Zy~2Zy) +(Z,—2Zy) B=F—A"*F  Bp— g3l’iAm—iF1~

The next term of the sequence is
Zy = A"73F, By,

and A2~ ZytZy)+ (2~ Zy+ Z)) B= F+-AmF, By~ 5 AnE,
i=4
Proceeding in this way, we can prove inductively that
Z = C-13 ()1 A"7FB, . (29)
r=1

We have termed this solution the rational solution since it depends only on a knowledge
of the coefficients of the characteristic equation of B and these coeflicients can be deter-
mined by purely rational calculations. Clearly, there is a similar solution which depends
on the characteristic equation of 4, and in practice one will choose the matrix of lower
order. A computer would probably remark at this point that the present distinction between
rational and irrational solutions is somewhat artificial, since eigenvalues and eigenvectors
are in practice determined by purely rational operations and the determination of the
coefficients of the characteristic equation is not in general a trivial task. It is, however,
important to observe that the irrational solution of § 3-2 requires that 4 and B should be
non-defective but the semi-rational solution of §3-3 requires that 4 or B should be non-
defective. The solution (29) is free from these restrictions and is thus more general than the

two preceding solutions.
13-2
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We conclude this section by sketching an alternative route to the solution. This time we
proceed by systematically deflating the matrix B. If v; is any constant, we can write (16)

in the form (A4v,) Z = F+Z(v,—B). (30)
Again, if v, is any constant, we have, after a little algebra,

(A+v,) (A+v) Z =vyF+v,Z(vi—B)+AF+v, AZ — AZB;
the terms v, AZ and — AZB can be transformed by using (30) and we find

(A+vy) (A+v)) Z = (v, +vy) F+ (AF—FB)+Z(v,—B) (v,—B).
Similarly
(A-+vs) (A+vy) (A+v)) Z = (vypy+vyv5+vspy) Ft (v 40y 4-vy) (AF—FB)
+ (A*F—AFB+ FB?) +Z(v;—B) (v,—B) (v,—B).

These results can be continued to as many factors as desired and it follows from the Cayley-

Hamilton theorem that the term in Z on the right-hand side is eventually annihilated when
the constants v; are the eigenvalues of B. The solution can be written in the alternative form

m—1
Z = C_l gopv'ﬁ‘(m—r'-l)’ (3]‘)
where Fy = ArF—Ar-\FB+ A7-2FB*— ...+ (—) FB,

F(o) = F.
Example 3-31 0
0z 2z
0
0

Z31 239
0O O 0

N
D
—
N
N
[
S B SO

The methods are illustrated with reference to the solution of the equation
(02408 z=0

for the region and boundary values shown on the diagram above. The example has been
chosen so that the arithmetic can be carried out mentally.

If the matrix of the elements z;; is partitioned with two columns z; and z,, the solution
can be determined by the vector equation

L B

4 —1 0 4
where P—=|—-1 4 1|, fo=]|6
0 —1 4 4

and the elements of f; are all zeros. The concise formulation is
0 4
D2Z+ZD?=F, F=]|0 6
0 4
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and D? = 2] —§— 8%, the fore-operator being of order three and the aft-operator of order
two.
From the results of § 3-1, the inverse of the big matrix is

208 120 47
P I )
P21 2_N-1———|120 255 120},
(P2—1I) ;o @D s
47 120 208
712 225 68
1
2_DN"1P=_---|225 780 225].
(B2=D)7tP 2415
68 225 712

For the remaining three methods, we require the eigenvalues and eigenvectors of D?;
/117 = 2(1"-(:05%?77) Tpq =J%sin (ipqﬂ) (p:q”_‘ L2, 3))
vy =2(1—cosipm) 5, = Jhsin(hpgm) (prq=1,2).

The irrational solution

Z=2z,,1,0,
z pst
pq /1 +V °

The scalars z,, (i.e. the elements of Z in the double basis (7, p; s, o) are recorded below in
matrix form:

3+2./2 3422
3—/2 5—/2
0 0
3-2/2 3-2)2

3+J2  5+.J2

and the relevant base matrices r, o, are

1%

V2 /2 /2 —J2
noo=x1 2 2|, no, =%l 2 —2},

/2 /2 V2 —J2

(V22 V2 -2
rs0; =% —2 —2|, ry0,=1%] —2 21.

L V2 /2 L V2 =2

The semi-rational solution
Z = pglzpap

and the equations to determine the columns z, are
D2y, D)z, =f,, vi=1, vy,=3,
4 4
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The rational solution
[(D?)2+4D24-31] Z = D*F—FD?4-4F,

16 —8 1
(D?)24+4D%?2 431 =| —8 17 —8]|,
| 1 —8 16
[4: 10
D2F—FD24+4F =|6 16].
(4 10
The solution
By any of these methods, the solution is
116 298
1
Z = 61 166 432].
116 298

Example 3-32

The finite difference approximation to the solution of the equation

hQ( 2 30 »

affords a more practical illustration of the methods developed in § 3. The function z is to
be determined within the region 1 <r <2, —} <y <, given that z vanishes on the
boundary of the domain. A solution of this problem by relaxation methods was given
earlier by Fox (1947).

We replace (32) by a second-difference approximation with a tabular interval. The
operators —#4%9%/dr? and —h?%0?%/dy? are then replaced by the matrices D2 The operator
hd/dr can be approximated by the difference operator 4(E—E-!), i.e. by the matrix
3(S—8%*). Taking % = } the matrix equivalent of the term 342 d/rdr is

"0 & 0 0 0 0 0]
—&% 0 & 0 0 0 0
0 —% 0 & 0 0 0

I
ojes

0 0 0 —f& 0 &
1
9

1
0 0 0o 0 0 -

and the top row of the matrix corresponds to r = 1%, the bottom row to 7 = 1{. Denoting

the above matrix by C, and the values of z at the tabular points by z;, the determining

equation iS DQZ_CZ+ZD2 _ F, (33)
where f;; = 4. The matrices D? are of order 7.

We shall illustrate here by using the irrational method. If the first two terms in (33) are
added together, the equation is of the form (16) but the eigenvalues and eigenvectors of
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D2—C are not readily accessible. We may as an alternative use the irrational method in an
iterative routine. Since D? — RAR*

we can write (33) in the form
AW+ WA—aW = R*FR = F,,
W = R*ZR, o= R*CR.

If we take W =Ww,+W,
where AW +Wy A = F, (34)
and AW+ WA = a(Wy+ W), (35)

we can find W, from (85) by iterating. Correspondingly, we have
Z=Zy+2Z,, Z,=Z+Z,+2Z;+...

4
We record in table 4 the terms Zy, Z,+Z,,, Z,+ > Z,;, rounded off to five figures; the
1

solution is symmetric in the co-ordinate y and only half the solution need be recorded.

TABLE 4
ZO
y=—% y=—1 y=—% y=0
r=1% 4-551 7-103 8:426 8:838
7-103 11-434 13-765 14-500
8:426 13-765 16:699 17-632
8:838 14-500 17-632 18:632
8:426 13-765 16-699 17-632
7-103 11-434 13-765 14-500
r=1% 4-551 7-103 8:426 8:838
Zy+2Zn
r=1% 5-118 8:094 9-671 10-166
7-668 12-442 15-047 15-873
8:695 14-247 17-314 18:292
8:666 14-184 17-223 18:190
7-785 12-601 15:203 16-:023
6:110 9:652 11-491 12-060
r=1% 3:583 5404 6-289 6-555
4
4%z,
r=1% 5-068 8:002 9-550 10-036
7-520 12-172 14-695 15494
8476 13-845 16-791 17-728
8434 13-759 16-671 17-595
7-610 12-281 14-789 15-577
6-048 9-541 11-349 11-908
r=1% 3:635 5499 6411 6-687

It can be seen that the sum Z;+Z,, gives a fair approximation to the solution. Taking
the absolute-value norms of Z, Z,,, ... we obtain a rough measure of the convergence of
the iteration:

N(Z,) N(Z,y) N(Z,;) N(Z,,) N(Z,;5)
N(Z,)  N(Zn)  NZy,)  NZy  NZy
0-096 0-248 0-180 0-232 0-200

N(Z) =ZZJ_IZU~|-
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The next term of the series is (rounded off)
Zys
0-001 0-001 0-002 0-002
0-001 0-002 0-002 0-001
0-000 0-001 0-001 0-001
—0-001 —0-002 —0-002 —0-002
—0-002 —0-004 —0-005 —-0-005
—0-002 —0-004 —0-006 —0-006
—0:001 —0-002 —0-003 —0-003

Since successive terms of the series are alternatively positive and negative, we can accept

4 .
Zy+2Z,; as a reliable solution of the difference equation.
1

Example 3-33
The semi-rational method provides a somewhat quicker route to the solution of example
3-32. We write (33) in the form
(D?—-C)Z+ZD%*=F (36)
and seek a solution based on the eigenrows of the aft-operator D2. Since F is symmetric
about y = 0, the solution is of the form

4
gzzp—l‘fzpla

where v, = 2(1l—cosgpm), 0, = §singpgm.
The remaining three eigenrows of D? are anti-symmetric about y = 0 and make no con-
tribution to the solution; hence, the solution is obtained by solving four sets of equations of

order seven. The matrix of these equations is a continuant matrix of the form
[(2+vyp_y) [—S—5*—C]

and the equations are easily solved by the well-known factorization method.

TABLE 5
y=-1 =1 =4 y=0
sum of first two harmonics
r=1% 4-873 8:170 9-585 9-887
7-287 12:372 14-739 15314
8:235 14-051 16-835 17-540
8-191 13-963 16-712 17-403
7-368 12-482 14-827 15-385
5-818 9732 11-385 11-726
r=1% 3:452 5-654 6:440 6-545
sum of first three harmonics
r=1% 5:052 8:033 9-511 10-080
7-501 12:208 14-650 15-546
8:456 13-881 16-744 17-779
8:413 13-793 16-620 17-643
7-588 12-314 14-736 15:623
6-027 9-572 11-298 11-952
r=1% 3-618 5:526 6-371 6-725
contribution from fourth harmonic
r=1% 0-017 —0-030 0-040 —0-043
0-019 —0-036 0-047 —0-050
0-020 —0-036 0-048 —0-051
0-020 —0-036 0-048 —0:052
0-020 —0-036 0-047 —0-051
0-019 —0-035 0:046 —0-050
r=1% 0-016 —0-029 0-038 —0-041
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The four terms of the solution can be regarded as successive harmonics and we should
normally expect that the higher harmonics will make only a small contribution to the
solution; if their contribution is of the same magnitude as the contribution from the lower
harmonics, the solution may be a poor approximation to the solution of the differential
equation (32). The constituent terms of the solution are recorded in table 5.

4. SOLUTIONS GENERATED FROM FACTORIAL POLYNOMIALS

In preceding sections, it was necessary to introduce the boundary conditions at the very
outset of the numerical solution. Here, we temporarily ignore the boundary conditions
and seek first solutions which satisfy the difference equation; the boundary conditions are
subsequently fulfilled by forming a suitable linear functional of these functions. In the
language of function space, we regard the true solution as a vector whose components
individually satisfy the difference equation.

The polynomial solutions developed below are examples of a class of functions which
satisfy Laplace’s difference equation; this class is called preharmonic by Allen & Murdoch
(1953) who give references to earlier work.

We use a Cartesian lattice and consider first Laplace’s equation defined over a rect-
angular area, the function being prescribed on the boundary. There is no inherent difficulty
in extending the technique to domains bounded by curved lines, but in doing so, we shall
be forced to consider more closely the uniqueness of the solution.

The reduced factorial polynomials which we have already used in part I are obviously
suited to our purpose here. We use the notation of Aitken (1932).

x(x—1) (x—2) ... (x—p+1)

Reduced descending factorials:  x(, =

P! (37)
Reduced central factorials: xp = (x+5(p—1)) (p).
These polynomials satisfy the difference equations
Ax(p) = X(p-1) Sx{p} = Xp-13 (38)

From these definitions it is clear that the functions

U} = Xy — Xip— Yiy T Xip—ay Yiay — ,} (39)
V= XYy —Xp-n Yiny T Xp—5 Yis)
satisfy the Cauchy-Riemann equations
80, =8,%, 8,U,=—47, (40)
and that both satisfy Laplace’s difference equation. More generally, the function
2(x,9) = (a, Uy +5,7;) (41)

satisfies the finite-difference equation at all lattice-points in the domain. The constants
a,, b, are at our disposal to satisfy the boundary conditions.

If there are n x m points in the interior of the domain, the boundary will contain 2(n-+m)
points. Consequently, there will be a reduction in the number of unknowns if mn is greater
than 2(m-n), i.e. (m—2) (n—2) > 4. The limiting cases are 4 X 4 and 6 x 3.

1 We are indebted to Dr H. I. Scoins for this reference.
14 VoL. 252. A,
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4-1. Suitable sets of polynomials

There are two infinite sets of functions at our disposal and they are all linearly indepen-
dent. It appears that we may make any suitable choice of these functions and obtain a
solution satistying the boundary conditions; if so, however, we may make a second choice
and obtain another solution. From the considerations of §3 there is a unique solution.
Consequently, the difference of our two choices is a function which is zero at all interior
lattice-points and at the boundary points—but not necessarily zero at intermediate points.

We illustrate by some very simple examples—chosen, not to show the method in action
where it is efficient, but to elucidate the apparent non-uniqueness of the solution and the
considerations which must govern the choice of component functions.

Consider first the simplest possible case of four boundary points and one interior point.
The result is trivial and well-known ; the central value is the average of its four neighbours.
But to apply the suggested method.

The possible functions starting with those of lowest degree, are

UOZI’ %:0:

m:x’ n=y,

U, = 32— — b2~ = 30—,
Vy=uy....

Taking the origin at the centre of the square, we choose four functions of the lowest degree
available; V, is not suitable since it vanishes at all boundary points. Putting

z=a+bx+cy+d(x*—y?),

and, using the notation familiar in ‘relaxation’, we have

zy=a+b +d,

zZyg=a +c—d,

zg=a—b +d,

zg=a —c—d
and zy = a.

Eliminating a, b, ¢, d, we have
2y =121+ 2,25+ 2,);
but we possess an unexpected second-degree interpolation polynomial for the values at
intermediate points—unless z, 4z, = z, - z,, when the polynomial is of first degree.
It is not, however, necessary that the polynomials be centred at the centre of the square.
Let the origin be taken at the south-west corner. This time ¥, is admissible and we take

z = a+bx+cy+dxy,

then zy=a+2b+ c+2d,
Zy=a+ b+2c+2d,
Zg=a+ -+ ¢,
zg=a+ b
and zyg=a+b+c+d=}(z,+2z,+25+2,).

It may be verified that the same value for z, is obtained if (x2—y?) replaces xy.
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Similar results are to be expected for larger domains and any suitable choice of solving
functions will lead to the unique solution at the lattice points of a rectangular domain. The
boundary conditions determine a matrix of order 2(m—+n) which operates on the coeffi-
cients a,, b,; if this matrix is inverted, the influence of each boundary value upon the values
at the lattice points is obtained.

It is natural in seeking a solution to choose functions of lowest order—if only for case in
computation; but there is no compelling reason to do so and it is meaningless to describe
one choice of polynomials as more exact than any other choice. That the results of the
different choices for interpolation would be very different, although true, is really not
relevant to the problem in hand: the solution is defined only at the lattice points and any
attempt to interpolate can be based only on lattice-point values. We may borrow Whit-
taker’s term ‘cotabularity’ to describe these solutions which are identical at the lattice
points and boundary points.

In applying this method to regions bounded by curved lines, two courses are open. We
may adhere to a net of lattice points which fit the boundary as closely as possible or we may
use broken lattice lines which terminate on the boundary. Itis convenient here to introduce
the following terminology for lattice points of the domain: inner points, all of whose lattice
neighbours lie in the region, outer points, one or more of whose lattice neighbours lie outside
the region,T and boundary points which lie in the boundary curve. These distinctions are
commonly accepted in numerical work though the terminology may not be. If the values
of the function at outer points are estimated from the given boundary conditions, the values
at inner points can be obtained straightforwardly by using p suitable polynomials if p is the
number of outer points. If boundary points are used and if they are ¢ in number, it is
possible to use ¢ polynomials with arbitrary constants a,, b, equating the value of
(a, U, +b,V,) at each boundary point to the value prescribed at that point; but the solu-
tion obtained in this way may not be free from ambiguity, since different choices of poly-
nomials will in general interpolate differently at boundary points. An unambiguous
solution can, however, be obtained by using p polynomials to obtain the values of the
function at the outer points in terms of p arbitrary constants. The constants are evaluated
by setting up approximate finite-difference equations relating the outer points to the
prescribed boundary points. Similar considerations apply if the boundary conditions are
of a more general form.

The elucidation of polynomial solutions of the difference equations of mathematical
physics would be of practical value in computation. It seems likely that many trial-and-
error methods of solving difference equations are equivalent to the use of polynomial
solutions. If polynomial solutions of an adequate range of difference equations were
available, they would serve to uncover some of the hidden assumptions in trial-and-error
methods and they would reveal the discrepancy to be expected betwecen the solution of a
differential system and the solution of an approximating difference system on meshes of
practical size.

+ Courant et al. (1928), distinguish two sets of points, Randpunkte and Innere Punkte which appear to
be identical with our outer and inner points.

14-2
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4-2. Some practical considerations

In equation (39), the polynomials U, and ¥} are defined for unit tabular interval. If the
tabular interval is £, we must replace the fundamental definitions (37) by

y _ X (¥ —h) (x"—2h) v (= (p—1) h)
v P! ’ (37"
xipy = (¢ +3(p—1) K-

If x" = xh (x, integral), equation (37") are identical with (37) save for the multiplicative
factor ##. Similarly, the definitions of U, and V, in (39) may be used for any tabular interval
if a factor /?# is inserted.

The use of these polynomials in desk computation can be provided for if they are tabulated
for integral x and y over an adequate range. When a problem is solved within an automatic
computing machine, the accessibility of the polynomial values in the computation presents
a very different problem. Both these requirements encounter the practical difficulty that
the tabular values of the polynomials are spread over the range -+ 10° for 0 < x, y < 10,
0 < p < 10. A suitable norm must be found for each polynomial and practical use requires
that the norm should originate naturally from the problem to be solved; one method of
normalizing is given in example 4-21 and a second method is given in § 5.

The solution of a difference equation in a given domain can always be obtained as
accurately as we may desire by using a sufficient number of polynomials; but this accuracy
may be unnecessary and even misleading if our ultimate aim is to obtain a reliable approxi-
mation to the solution of a differential equation, the solution of the difference equation
being merely an intermediate step. For example, the polynomials U, and V, are identical
with the real and imaginary parts of (x-iy)?/p! for p < 2; for p > 2, the discrepancy
between the polynomial solutions of Laplace’s differential and difference equations becomes
vrogressively greater as p increases. The practical question is “how many polynomials are
really needed in the approximate solution of a given problem?’ This is equivalent to the
requirement that an estimate of the error committed in adopting a given solution should
be readily available.

It is also pertinent to inquire whether the intermediate step of replacing a differential
system by a difference system is profitable here, since the considerations of the present
section can be readily employed in generating solutions whose components are functions
of a continuous variable. No general answer can be given to this question, since the relative
merits of discrete and continuous approximations depend very largely on the nature of the
problem to be solved.

The use of the polynomials U, and V, in a conformal transform is exemplified in
example 4-21.

Example 4-21

The conformal transformation of the quadrant bounded by the x and y axes and by the
curves 2 . v
2-38110 ' 1-38110

2(x%-—y?) =1 (43)

1, (42)
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into a rectangle provides a simple illustration of the practical considerations mentioned
in §4-2. We denote the transforming function by

w = u(x,y) —}—iv(x,y)
and seek a discrete solution of the form
w = Za,(U,+iV,) (44)
and we may take v to be unity on the curve (43). The value of # on the curve (42) is constant,
but this constant is initially unknown and we temporarily denote it by ¢ (the analytical
value of ¢ is }7). The function « is odd in ¥ and even in y; v is even in x and odd in y.

We choose % = 1; with this interval, the value of # or v is available at nine boundary
points. These values can be used to determine the coeflicients a, in terms of the constant ¢
and nine components suffice to solve the difference equation exactly. If a smaller number
of components is employed, the determining equations can be satisfied in a least-square
sense. The boundary data will not then be satisfied exactly and the constant ¢ can be chosen
to minimize the sum of the squared errors at the boundary; this is the procedure followed
here, using two, three or four complex components. Despite the cautionary remarks in
§4-1, we interpolate freely in obtaining the boundary values of the polynomials since we
are not seeking high accuracy here.

A suitable norm for the components can be formed thus. For a fixed value of p, we write
down in order the numerical values of ¥, on the curve v = 1 and the numerical values of
U, on the curve u = ¢. These values form a vector b, of order 9, and the norm of the vector
can be defined as (6}b,)*; the same norms can be used for the components. It is now
relatively easy to set up equations to determine the coefficients a,, or rather, the coeflicients
d,, the bar being used to distinguish the coefficients appropriate to normalized components.

The determining equations for four components is given below. The matrix on the left
of the equations is symmetric and only the lower half is recorded.

. 1-82092 +1-13754¢

1-:00000 a

—0-19628  1:00000 : . a, — 025945 —0-01996¢
—0-46791 —0-41926 1-00000 . 4| | —0-73469—0-71870¢ |
—0-20083 —0-49250 0-17721 1-00000 | | g, — 050285 — 0-21219¢

The corresponding equations for two or three components are obtained by truncating the
above set.
The value of the constants a, are

two components three components four components
a, = 1-84091+1-17905¢ a; = 2:03122-+1-09102¢ a, = 2:016124-1-18010¢
a; = 0-10187-+0-21146¢ as = 0°2786640:12969¢ az; = 0:25711+4-0-25682¢
a5 = 0:33257—0-15383¢ a5 = 032148 —-0-08843¢
a; = —0°028304-0:16696¢

These values of the coefficients can now be used to evaluate the error at each of the nine
boundary points. If we choose ¢ to minimize the sum of the squared errors, the resultant
values of ¢ using two, three and four components are

0-7856 0-7794 0-7831 (c— m, h— 0).
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The numerical values of the errors at the boundary points are recorded in table 6, rounded
off to three decimals.

These results suggest that reliable approximations can be obtained using a small number
of components; but further trial on a range of examples is desirable.

TABLE 6
two components three components four components
—0:036 0-020 —0-006
—0-026 0-002 0-:002
—0:002 —0-032 0-009
0-022 —0:035 —0:009
0-011 0-038 0-003
-0-092 —0:042 —0-021
—0:058 —0-016 0-000
0-026 0-032 0-030
0-125 0-025 —0-009

5. VARIATIONAL METHODS

The concepts developed in this section are complementary to those of the preceding
section and we shall employ the terminology introduced there to distinguish different sets
of points; we suppose that the set of outer points approximate to the true boundary with
sufficient accuracy and we shall make no use of boundary points.

The application of variational concepts to finite-difference equations is due in the main
to the fundamental paper by Courant et al. which we have cited several times; but the range
and depth of these concepts have been considerably enriched in recent years. The use of
variational methods depends mainly on the choice of a suitable scalar which induces a
positive-definite metric in the domain. If there are p outer points in a closed domain of any
shape, the metric determines a function space of p dimensions consisting of functions which
satisfy the difference equation and any such function in the domain can be expressed in
terms of p orthogonal components; we may, in fact, regard the function as a vector in the
function space. The sense in which we use the terms ‘function’, ‘orthogonal component’
and ‘vector’ will appear presently. The nominal finitude of the function space may be of
little interest to a computer if p is large, but the concept is none the less important.

We shall typify these concepts by applying them to Laplace’s difference equation and
by reviewing rapidly certain fundamental results of Bergman’s kernel function method
(Bergman 1953) and of the hypercircle method (Prager & Synge 1947). These results are
developed here for a finite-difference equation, but it will be apparent from the preceding
considerations, or by reference to the sources, that they are direct translations of results
obtained for differential equations by the authors cited.

We consider two functions U and V defined at the lattice points of a closed domain of any
shape and form a scalar E(U, V) from their divided first differences. The scalar is formed
thus: the forward difference between each inner point and its four neighbours (the neigh-
bours may be inner points or outer points) is divided by the mesh length % and the
divided difference is denoted by the symbol A and corresponding differences of U and V
are multiplied together and summed; no difference is formed between an outer point and
a neighbouring point. By definition,

E(U, V) = k3 AU AV, (45)
I
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the suffix / indicating that differences between outer points are excluded. Transforming the
sum and ordering with respect to V, we have

E(U,V) = =i 3V(%+0,,) U+hZV.UY. (46)

The first summation on the right is effected over inner points only and the second over outer
points; x and y are the co-ordinate directions and the symbol U? denotes the outward differ-
ences between the outer point U; and each of its neighbouring inner points, divided by 4:
the metric of the domain is determined by the coeflicients of the bilinear form. A function
U can be regarded as a vector of unit length in the function space defined by the metric if

E(U,U) =1
and two functions U and V can be regarded as orthogonal vectors if
EU, V) =0.

We may then employ the vector notation
UV or (U.V) instead of E(U,V).
From the definition of £ it is clear that

E(U+U,U+U") = E(U,U)+2E(U, U")+EU", U"). (47)

If U is a function which satisfies the difference equation at inner points and U’ is any
function which satisfies zero boundary conditions at outer points, then from (47)

EU+U,U+U") = E(U,U)+EU", U’
> E(U,U),

i.e. U possesses an extremum property with respect to all functions which satisfy the same
boundary conditions as U. It is easy to show by the method of Lagrangian multipliers
that the function which satisfies the difference equation and the prescribed boundary
conditions possesses a minimum property with respect to all functions which satisfy the
same boundary conditions.

We now return to the factorial polynomials of the preceding section which satisfy the
Laplace difference equation at inner points, and we now use the vector notation U,, U,, ...
for these functions making no distinction between the U set and the V set of functions. If
W is any other function of the space, (46) reduces to

EW,U) =h3I WU = W.Tj (49)
0

z

(48)

and the right-hand side of (49) can be evaluated if the boundary values of W are prescribed.
If W satisfies the difference equation, the right-hand side of (49) can be written in either

of the forms KRS WUY = h'S UW? (50)
0 0

and can be evaluated if W or W7 is prescribed. The solution U which satisfies the difference
equation and the boundary conditions can now be determined by a routine slightly
different from that of §4. We write

U=, U+ Up+ ... +¢, T,

and U.U, = ¢, Up+y(U, . Uy) .. 46, (U, . Uy).
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The scalar products on the left side of these equations can be determined from the prescribed
boundary conditions, and the symmetric matrix on the right has the elements (J. U)). If
any of the components U, satisfied zero boundary conditions, the corresponding row and
column of the matrix would be zero; we may suppose that any such components have been
discarded from the sequence. More generally, we must suppose that the matrix (U,.U;)
is non-singular; the component vectors are then independent in the domain. To prove that
» independent vectors exhaust the space, it is sufficient to observe that any prescribed
boundary values at p outer points can be obtained by superposition of p independent
vectors.

A more elegant method of reaching the solution depends on the construction of a set of
orthogonal and normed vectors 1}, 1,, ..., I, from the set U}, U, ... by the Gram-Schmidt
process. The method of construction of the solution ensures that the vectors I, are in-
dependent.

The vector [, is obtained from U, by choosing a norming constant such that

I,.1I,=1.
If U, is not orthogonal to I}, then

I.(Uy—al)) =0, where [,.U,=ua

and we define [, as N(U,—al,), N being the norming constant. The remaining vectors I/,
are similarly defined. The components /, can be regarded as projection operators and the
function
K=1L+1,+..+1,

can be regarded as the kernel function or the unit multiplier for the domain in the sense
that the operation of K on any function W defined in the domain and satisfying the differ-
ence equations, yields the function W again. If I does not satisfy the difference equation,
the operator K selects from it those components which satisfy the difference equation and
rejects the remainder:

KW= (W.IL) L+ (W.L) L+...+(W.L) I,

When the kernel function for a given domain has been constructed it is a trivial task to
determine the function U which satisfies the difference equation and boundary conditions;
for

KU=SWU.II,-U
k=1

and the coefficients (U.I,) are determined by (49) or (50).

This definition of the kernel function as unit multiplier is due to Bergman who has
applied the concept to a wide class of differential equations. In general, the construction of
the kernel for a finite-difference problem would not be justified unless we wished to obtain
solutions for several sets of boundary conditions, since the determination of the kernel
components by orthogonalizing is in general a more laborious task than a straightforward
application of the polynomial method ; but the bare knowledge of the existence of the kernel
function gives greater confidence in the use of polynomials.

What then becomes of the reputed independence of the factorial polynomials of §4?
The answer is that they are independent in a lattice space containing an infinite number of
points but not all independent in a finite lattice space.
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Hitherto, in this section, the solution has been constructed from functions which satisfied
the difference equation. We might, however, have proceeded from satisfaction of the
boundary conditions to satisfaction of the difference equation.

If U" is any function which satisfies zero boundary conditions in a Dirichlet problem and
if V satisfies the difference equation, (49) shows that

UTV=o,

i.e. the subspace of functions which satisfy zero boundary conditions is orthogonal to the
subspace of functions which satisfy the difference equation. Starting from any function
U which satisfies the boundary conditions, we may seek a solution by minimizing

E(W, W),
-~ N
where W=U+73 c¢I.
1

The superscript N denotes the number of inner points and [}, is a set of orthonormal functions
with zero boundary values. The coefficients ¢; are given by

¢, =—1I;.U.

These coeflicients are not easy to compute and the number of inner points usually exceeds
the number of outer points; for these reasons the kernel function approach appears prefer-
able if a closed solution is being sought, but it may happen in the solution of practical
problems that a small number of components suffices to give a reliable approximation.

The variational concept can obviously be used in conjunction with difference equations
of higher order or in conjunction with higher-difference correction terms. As elsewhere
in analysis, the fundamental scalar (or metric) can be used to yield directly the difference
equations and boundary conditions appropriate to the problem; or it can be used indirectly
to motivate the choice of component functions.

6. EIGENVALUES AND EIGENFUNCTIONS OF PARTIAL-DIFFERENCE EQUATIONS

The preceding sections discussed a number of techniques for the equilibrium problems
of partial-difference equations. The rational matrix solution of § 3 is purely algebraic, but
the irrational solutions of that section are clearly analogous to orthogonal function expan-
sions in the theory of differential equations. Sections 4 and 5 discussed two types of solution;
all the solutions of the first type individually satisfied the difference equation and all the
solutions of the second type satisfied the boundary conditions.

We now seek the eigenfunctions of a partial difference equation and its boundary con-
ditions. We suppose that the set of eigenfunctions is complete and spans the finite-difference
domain under consideration; in other words, we suppose that an arbitrary function defined
in the domain can be uniquely represented in terms of the eigenfunctions. Eigenfunction
expansions can be used to solve partial-difference equations in much the same way as the
one-dimensional equation Ax = f can be solved by expanding f and x in terms of the eigen-
vectors of 4.

We consider first a rectangular domain and seek solutions of the matrix equation

AU+UB = fU (51)
and of the adjoint equation VA4 BV = fV. (52)

15 Vor. 252. A.
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The matrices U (nxm) and V (m xn) are rectangular, 4 and B being square matrices;
fis ascalar. The problem is to determine the values of f for which non-trivial solutions exist
and then to determine the corresponding arrays U and V. _

Intuition suggests that there may well be some intimate connexion between the values
of f and the eigenvalues of the matrices 4 and B. For example, if we put

f=A+v
in equation (51) and bring the term on the right of the equation to the left, we have
(A-M) U+ U(B—vI) = 0. (53)

An obvious solution is obtained by making both terms in (53) vanish. We may choose A
tobe an eigenvalue of 4 and v to be an eigenvalue of B; the columns of U must then be eigen-
columns of 4 and the rows of U eigenrows of B, i.e.

U=U;=r0; when f=A+v;; (54)

the eigenmatrix U; is now completely determined apart from an arbitrary multiplicative
factor. We follow here the notation established earlier, namely

A: eigenvalues, A;; eigencolumns, 7,; eigenrows, p;.

B: eigenvalues, v;; eigencolumns, s;; eigenrows, o,

Repeated eigenvalues of 4 or B will cause no difficulty provided that each root of multi-
plicity p has p independent eigenvectors. Similar considerations apply if

Atv; = A, +v, (i=p,7+9).
The requirement of completeness reduces, then, to the requirement that the eigenvectors
of 4 should span a space of order n and that the eigenvectors of B should span a space of
order m. Another line of reasoning follows from the observations that the matrix equation
(51) can be written as a vector equation of order nm.

The matrices U; form a complete set of base matrices and any matrix Z of order nxm
can be analyzed into a linear sum of the base matrices, i.e.

Z=732z,U,. (55)
iJ

The z; are here the elements of Z in the basis U; and they can be determined by forming

the scalar p, Zs,: 2y, = pyls, since p,U;s, = 08,0, (56)
The adjoint equation (52) can be treated in a similar way. It can be shown that the eigen-

function which corresponds to the eigenvalue A;4-v; of (52) is
V; =s;p; (note the transposition of suffixes).

This method of defining the components of the adjoint basis has the slight advantage that
V; is the transpose of U; when the matrices 4 and B are symmetric.
It can also be shown that any matrix Z of order m x n can be analyzed in the form

Z=32, (57)
iJj

where z; = 0,2, (58)
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6-1. Another formulation of the eigenfunction expansions
The following results are easily verified
V, U;=0,s,0;

bg ~ij bivq” j>

U;"qu = 3jqrip11;

and, in particular, Ui =5,05 UV, = 1:p,.

It may be noticed that the last two products above yield projection operators and that the
first commutes with B if ¢ = j and the second with 4 if p = 1.

These results enable us to rephrase the expansion theorems (55) and (57) in a manner
more consonant with the theory of orthogonal functions. We shall turn the well-established
notation V. U to a new use by employing it to denote the trace of a matrix product, i.e.

V.U = trace (VU). (59)
Since the trace of a projection operator such as s,¢; is identical with the scalar product
;5. we have 1 (p—iandg—j
- q9=J ))
el = U ={y (o 1™ (60)
0 (p+iorqg=+j).

In this sense, we may say that the adjoint eigenfunctions V,, are orthogonal to the eigen-
functions Uj;.
The coefficients of the expansion

Z=3z,U; (55 bis)
are now determined by z; =V;.Z. (61)

This rephrasing of the expansion theorems opens the way to the familiar Cauchy-
Schwarz and Bessel inequalities which are of importance in the metric theory of finite-
dimensional spaces.

It would be possible to formulate analogous results for more general difference equations
and more general domains; for example, it is always possible to write the determing equa-
tions as a single vector equation by using a big matrix similar to that of § 3-1. But it may not
be easy to state the orthogonality relations in concise and simple form.

6-2. A perturbation technique
We shall illustrate the above results by describing a perturbation technique which is
suggested by the Lennard-Jones (1930) method for the solution of quantum-mechanical
eigenvalue problems.
We consider the eigenvalue problem
AZ+ZB+[aZ] = gZ, (62)

where [¢Z] denotes a matrix whose (ij)th element is «;z; and g is the eigenvalue we wish
to determine; the remaining symbols have their usual connotation. It is assumed that

the eigenvalues of AU+UB = fU (63)
are known and complete; the term [¢Z] can, then, be regarded as a perturbation.

We write Z =3z,
and we may also write [2Z] = Zz;[«U;] = 26; Uj;.

15-2
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The coeflicients f,, are given by Bpy = Z2,V;..[aUy)
= Zttyg, 2
where Uy, ii = Vog - 12Uj5]- (64)
Equation (62) can now be written as
(Ap+v,—g) 2py+ 2y, 1i2;; = 0. (65)

The concepts of the present section are not restricted to those problems in which a
difference equation is formulated as a matrix equation of the type considered in §§2, 3
and 6. The fundamental requirement is that a complete set of base functions should be
available. It is shown in another paper that a finite set of trigonometric functions
is a suitable continuous basis in one-dimensional problems and that this basis can be used
to obtain continuous approximations to continuous functions which are defined by a
differential system or by an integral equation; it was also shown that this method of approxi-
mation is sometimes equivalent to the use of a higher-difference correction. In two-
dimensional problems, the set of products of a pair of trigonometric functions can be used
as a continuous basis, and—as in the one-dimensional case—the components of a given
continuous function in this basis are obtained by a discrete definition. An adjoint basis can
usually be found and the resolution theorems of the present section require little modi-
fication; this technique is exemplified below in examples 6:21 and 6-22.

Example 6-21
The differential system

32
3x2+xﬁx dy? :IZW256 2=0, y==*3 x=12

may be solved by using the continuous basis

2\t . 2\t L
qu;(n—jr—l) sm/mx(n+1) singm(y+%) (0<p, ¢g<n+1l),

where $ and g are integers and g assumes odd values only; the tabular intervalis 2 = 1/(n--1).
The component functions may be differentiated since they are continuous, but the

coefficients z,, of the representation
z=2z,U, (66)

are determined as in §6-1 by using the matrix determined by the tabular values of U, ;
the term 30z/xdx can be resolved by using the device of § 6-2. The determining equations

for the z,, are of the form
(p2+q )ﬂ'QZj)q—l z ‘bq, 2] = 256' (67)

The order of magnitude of the discrepancy between the above continuous solution
[obtained from (67)] and the solutions of examples 3-32 and 3:33 can be determined
without detailed arithmetic. The iterative solution of example 3-32 shows that the term
30z/xdx can be neglected in a first approximation. Denoting the coefficients of the
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continuous solution by z,, and the coefficients of the analogous difference equation by z,,,
we have approximately

Zpy— 2, = 256[ i - ! —]
v %0 = 208 4iin? (k) +sin? (b (P A7l
The discrepancy is due mainly to the lower harmonics and we can write

, 256 pt+qt o,
qu“ZPQNW(p2+q2)2 )
when p and ¢ are small compared with 1/A. Taking, for example, p = ¢ =1, h = §,

2oy 2pg ~ -

By reason of the normalization factor /24, the elements of the base functions U,, are always
less than } for £ = §. Hence, the discrepancy between any two corresponding elements of
the two solutions is of the order 5.

The analytical solution of this problem (Michell 1goo) confirms this estimate (the tabular
values of the analytical solution are recorded in Fox (1947)). It may, however, be noted
that the solution (66) is a cardinal function approximation to the true solution; if the
analytical solution is not available, the simplest method of assessing the value of an approxi-

mation of this type is to compare the results obtained on two different tabular intervals.

Example 6-22
It was shown by Bolton & Scoins (1957) that the determination of the energy £ and the
wave functions of the Schrodinger equation for two electrons enclosed in a sphere can be
reduced to a solution of the eigenvalue equation
_ﬁ_«_a_.z_ __I._._._.__.Z_Ri__:] zZ = 0Z
0x? dy*  max (x,y) 1" &%
where g = R?Eand z=0onx=0,1andy = 0, 1.
The solution of this problem can be obtained by assuming for z a continuous repre-

sentation of the type (66). For example, for 4 = 4, R = 10, the eigenvalues of the symmetric
matrix

2%+ 375 75 75 7-5
5m%+ 375 75 7-5
5m2+37'5 7-5

8m%-+37-5

(only the upper triangle is recorded)

are approximations to the eigenvalues g. The approximations for 2 = §, 1, 1, are recorded

below. A A,
h=1 56+00 —
h=1 54-07 79-35
h=1 53-54 78-82
(symmetric (antisymmetric
mode) mode)

Bolton & Scoins obtained approximations to A; and A, by relaxations, using meshes
from & = } to A =}, and then extrapolated to # = 0. Their final values were

52:9940-01 and 78:7640-01.
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IV. BOUNDEDNESS OF SOME INITIAL-VALUE PROCEDURES FOR
NUMERICAL SOLUTIONS OF PARTIAL-DIFFERENCE EQUATIONS

1. INTRODUCTION

We consider here a number of arithmetical procedures for linear bivarite problems in-
volving a time-like variate and a space-like variate; it is shown that all of them can—
under certain fairly general conditions—be represented by the matrix equation

AZ+-CZB = F. (1)
Z and F are here rectangular matrices of the same dimensions, and 4, B, C, are square
matrices; Z is to be determined, the remaining four matrices being supposed known. The
matrices 4, B, C, possess very simple structures in the examples considered, and in each
example a solution of the appropriate form of (1) can be exhibited as an inverse matrix
operating on a column of values. Inspection of the coefficients of this inverse matrix
permits a ready assessment of the greatest possible growth of the matrix solution as the
numerical procedure is carried forward from an initial time to a later time; equally, the
greatest possible growth of a round-off error or blunder can be assessed simply. In this way,
we can determine (i) the boundedness (with respect to the time co-ordinate) of the arith-
metical result given by a numerical procedure, and (ii) upper bounds on the growth of an
error or blunder.

The following partial-difference procedures are examined in § 3:

(i) elliptic-harmonic, stepping-ahead;
(ii) wave equation, (a) explicit, (4) implicit;

(iii) heat equation, (a) explicit, (4) implicit.

These procedures have been proposed as finite-difference techniques for the numerical
solution of partial differential equations, and linear combinations of the implicit and
explicit procedures in (ii) and (iii) are commonly employed. It is natural to ask whether
the numerical answer provided by a given finite-difference procedure converges with
diminishing mesh-length to the solution of the differential equation. A satisfactory treat-
ment of convergence belongs to analysis rather than to algebra; but in a few instances the
solution of the differential equation is of simple analytical form and it is then possible to
treat the question of convergence by elementary considerations. We consider this question
only briefly.

These topics have been treated extensively in the literature (see, for example, the biblio-
graphy in a recent paper by Todd (1956)); some of the solutions presented here have been
given earlier in a somewhat different form by other workers and in particular by Todd
(1956) who uses a method of resolution similar to that of § 2:3 below. Unification of a part
of the theory in a single matrix equation, i.e. (1), may, nevertheless, be of interest.

2. SOME PREREQUISITE RESULTS

To avoid interruption of the arguments of §§ 3 and 4, or back-reference to parts I and III,
it is convenient to repeat here some elementary results of matrix algebra which we shall
require later. We follow notation used earlier in this paper, extending it where necessary.
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2:1. The central-difference operator —§? is naturally represented in matrix algebra
by the matrix operator D?, and the backward-difference operator V2 is naturally repre-
sented by the matrix 22, where

D2 = 2]—-S§—§%, 9?=1—-25%45%2

I'being the unit matrix and S a matrix with units in the super-diagonal and zeros elsewhere;
$* is the transpose of S. If necessary, the corner elements of D2 may be modified to take
care of the boundary conditions. For example, the non-zero elements of the first column
(or row), i.e. 2, —1, may be replaced by a,, a,; similarly, the non-zero elements of the last
column (or row) of D? may be replaced by a,_,, a,.

We posit (without attempting to prove) the distinction that space-like derivatives are
naturally represented in matrix algebra by central-difference operators and time-like
derivatives by backward-difference operators. The distinction arises from the fact that
time processes are essentially open in the sense that advance to a new time does not disturb
the steps already traversed. The corresponding matrix operator is naturally triangular.
It is easy to see that the natural time-like operator for operations on a column is a lower-
triangular matrix such as 22; for operations on a row, the appropriate operator is upper-
triangular.

The utility of these distinctions will appear in the examples which follow.

2:2. To shift the rows of a matrix Z up one place, we pre-multiply Z by the superdiagonal
matrix S; the first row of Z disappears when $Z is formed, and the elements of the last row
of SZ are all zeros. Similarly, a down-shift of the rows of Z is effected on pre-multiplying
by $*; the elements of the first row of $*Z are all zeros.

2:3. Insolving th ti
n solving the equation AZ+CZB = F,

n
we can resolve Z into the components Y z;0;, where the z; are columns of elements to be
1

determined and the o, are eigenrows of B, i.e. 0;B =v,0;. Z and F are here rectangular
m x n matrices, and B is square of order n. The m x n elements of Z can always be expressed
as linear functions of the m x n elements in n columns z; each containing m rows.

We can now analyze the matrix equation into vector equations as in §3-3 of part III.
Post-multiplying the equation by s; (0;s; = J;), we have

(A+v;C) z; = Fs;,

v; being an eigenvalue of B. This equation can be solved for z; if the determinant of (4 +v;C)
is not zero.
2-4. The expression of the matrix [/—aS+%5%]7! («, §, scalars) in powers of §'is

i a, 8" = I+aS+ (a®—f?) §?+a(a? —2f%) 3+ (a* — Ba?f2 4 ) $4+-....
0
The coefficients a, are related by the difference equation
a,— &y, +ﬂ2an—-2 =0,

and if we write a=2fcosf or «=2Fcoshd,


http://rsta.royalsocietypublishing.org/

/|
e A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

124 W. G. BICKLEY AND J. McNAMEE ON
they can be expressed in the form
sinh (n+1) 0

_ opsin(n--1)40
a,=p sinh

sin §
The coefficients are certainly bounded if « = 2f cosf and if f << 1; for f§ = 1, the sequence of
coeflicients is oscillatory. When « = 2§ cosh §, the coeflicients are in general unbounded.

or a,=/p"

3. MATRIX FORMULATION OF NUMERICAL PROCEDURES

We are now in a position to consider the procedures mentioned in the Introduction. For
definiteness, we shall keep in mind a block of four internal points in each row, the end
points of the row having the column suffix 0 or 5 (table 7). We take the space-like co-

ordinate x horizontal and the time-like co-ordinate y vertical. The mesh spacings are 4,, A,

and J. = hZ/h? in the elliptic and wave equation examples,

| = h,/h? in the heat equation examples.

TABLE 7

00 01 02 03 04 05
10 11 12 13 14 15
. + + + + . x
20 21 22 23 24 25 —
. + + + + - l
30 31 32 33 34 35 y
: + + + + .
40 41 42 43 44 45
. + + + + .

In each problem, the boundary values and initial values must be incorporated in the
matrix formulation; but the genesis of the matrix equation is simple if the computer’s
steps in setting up the arithmetical procedure are visualized.

Example 3-1. Elliptic-harmonic; stepping ahead ' I '
Zit1,j

The difference analogue of the differential equation

0%z 0%z
o
is Zi+l’j+2}il_21’j“‘“2zij_|_Zl-,j+1_f_Z}il’zj—l—QZij — 0. (2)
Y X

Treating the y variable as time-like, we regard (2) as an equation to determine z;,, ;. The
first two rows z; and z; (¢ = 1, ..., n) must be assumed known in order to start the procedure,
and boundary conditions at the ends of the range in x are required to continue.

We may set up the matrix representation by the transformations
0%z
9y
0%z

20°Z 52 —7D?
hxax2»>3zij - —2ZD?2,

2 2 2
hy “9V ZZ+1,j_>@ Z,
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but the second matrix term must be multiplied by the down-shift operator $*, since in
stepping ahead the x-operation is a row behind the z value which is currently being deter-
mined. The stepping-ahead matrix equation is then

D27 kS*ZD? = F,, (3)

where F, contains the boundary data.
To obtain a concrete picture of equation (3), we write out the first four rows of the
illustrated scheme of table 7 (opposite):

1 . . A Zu Zie Z1s Zig . . . . 2 —1
—2 1 . <l %21 222 Za3 294 p Zy zZip Ziy zZ || 1 2 -1
1 —2 1 | 231 Z3g  Z33  Zay Zg1  Z9g Zg3 Zgy .o —1 2 —1
I =2 1||z4 24 24 2y 231 Z33 Z33 234 . o1 2
zZy Zy Zy3 Zy4
| K20 Zn —Zee —Zos T Zo—KZis
B —KZg . . —KZg
—KZ3 . . —KZ3s

The known values on the right side of the equation are barred, and the dots denote zeros.
Here and elsewhere in the illustrative schemes we suppose that initial values (an arbitrary
function of x) are prescribed on y = 0 and if necessary on y = /, and that boundary values
(arbitrary functions of y) are prescribed at the ends of the range in x.

Returning to (3), we resolve Z into 2z;0; and multiply by s;:

(D?—kv;§*) z; = F\s; = f;.
Since 92 = [—25% +5*2, we have
[[—aS*+5%2] z; = f,
ie. 2 = [[—aS*+842]71f, (4)
where a = 2--Kkv;.

In the remaining examples we shall derive a number of equations similar to (4) and it is
convenient to consider them all together.
Parenthetical note

The relation between the stepping-ahead equation (3) and the standard boundary value
form of the elliptic-harmonic equation is easily demonstrated. We can in fact pass from (3)
to the standard form on pre-multiplying across by S. Noting that

—D2 I F
392:{ ] SS*:H, SF,:[Q},

we have from (3) on suppressing the zero bottom row

_D2Z—«ZD? = F,. (5)

16 Vor. 252. A.
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This equation is of standard boundary-value form.

Example 3-2 (a). Wave equation; explicit form . 4 .
21,5
This is identical with the stepping-ahead form of the harmonic equation save for a

change of sign in the second term of the matrix equation:

DT 4kS*ZD? = F,; (6)
and, as before, z; = [[—aS*+5*2]71 £, (7)
with a = 2—kv;.

[Note. We can convert (7) to boundary-value form on pre-multiplying by S. The inverse
matrix has then the form [(2—«v;) I—S§—S5*]~1. It can be seen, however, on purely alge-
braic grounds that this step is illegitimate. For example, if D? is of order n and has the form
2[—8—5%*, the roots v; are given by

v; =2[1—cosym/(n+1)] (j=1,...,n).

When 7 is odd and j = §(n+1), v; = 2 and the matrix [(2—«v;) I—S—S*] is singular for
k=1.]

Example 3-2 (b). Wave equation; implicit form .
+

The difference operation with respect to x is now acting in the same row as the quantity
which is currently being determined, and the additional operator $* is not required in
formulating the matrix equation. The matrix Z of the two preceding examples is not,
however, applicable here. The first backward difference with respect to y and the first
central difference with respect to x operate on the row z,,; hence, the rows z,; and z,; can
be omitted from the matrix Z. The wave equation is then represented by the implicit form

D?Z+-kZD? = F,, (8)
or (D +xv,;1) z = f;
i.e. z; = [(1+kv;) [ —25% +§*2]71 f,. (9)

Example 3:3 (a,b). Heat equation; explicit and implicit_ forms

_i_ explicit, + implicit
These two illustrations are very similar to examples 3-2 (a) and (b) of the wave equation,
and they may be treated together. The difference equations for the explicit and implicit

forms of the finite-difference heat equation are

Zii,j =% _ Zijr1T % —2z;

h h2

Y

and Ziv1,j Zij :Zi+1,j+l‘{"zi+l,j—l_2Zi+l,j

h B2

Y
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In each equation we seek to determine z;,, ;. In the explicit case, the x-difference is
operating on z;—a row behind the quantity being determined—and the pre-multiplier
$* is required with the space co-ordinate term; in the implicit case, the x-difference is
operating on z;,, ;. The backward difference with respect to the time-like term is repre-
sented by the matrix operator G — [_S*.

A little care is needed in defining the operand Z. Reflexion shows that Z embodies the
row zy (¢ = 1, ...,n) and succeeding rows in the explicit case; in the implicit case, Z embodies
z;; and succeeding rows. The matrix equations are then

DZ+kS*ZD? = F, (explicit) 1 (k= b ). (10)

and DZ+kZD? =F, (implicit)) o (11)
Resolving Z, we obtain z; = (I—aS*)"1f;  (explicit), (12)
z, = ([—S*)"1f, (implicit), (13)

1—«v, 1in (12
where :{ J (12),

1+«kv; in (13).
The left-hand sides of (10) and (11) are sufficiently obvious, but it may be useful to write
out the first few rows of the right-hand side in each equation:

Zo1 202 203 204 Zy +KZyy  Zgg Zos  ZoaTKZys
KZ . . Kz KZ . . KZ
00 05 20 25
F 1= _ _ 5 F. 2 = _ _
KZyy - . KZs KZg . . KZgs
KZgy - R KZ 4 . . KZys

4. DIscUSSION OF THE INVERSE MATRICES
Collecting together the inverse matrices of the examples discussed in § 3, we have
harmonic stepping-ahead: [/—(2-F va) S* 4 S*2]-1)
wave equation explicit:  [[—(2—«v;) $* +5*2]7], (k = B2[h2);
implicit:  [(1+4«v;) [—25%+8%%]7],
heat equation  explicit:  [/—(1—kp;) $¥]71,
implicit:  [\1+«v;) I—S*]"1, (k = h,[h2).
averaged: [(1+43kv;) I—(1—3%kv;) S*]7%,
The last line above is obtained by averaging the x-difference operation of the explicit and
implicit procedures.

In the expansion of the typical matrix (/—aS* +f25%2)-1, the successive powers of 5*
occupy successive subdiagonals and the coefficients of $*7, $*~1, ..., appear in order (left
to right) in the rth row of the inverse. The jth spectral component of the solution at any time
is obtained on multiplying the appropriate row of the inverse by the column f;. The con-
tribution of the initial values to the solution is embodied in the first product or the first pair
of products of the row-column multiplication; the contribution of the boundary values is

embodied in the first or second product and succeeding products.
16-2
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The constitution of the column f; is of interest. It is obtained on multiplication of the
matrix  in equations such as (1) by the eigencolumns s;. Each row of ¥ can be written in

the form o1+ oe+

the ¢; being eigenrows of B. The product of the rth row of F by s, yields the coefficient ;.
The conditions for boundedness have been discussed briefly in §2-4, but we may note
here the influence of the eigenvalues v; on the different procedures. It can be seen the step
from explicit to implicit involves a strengthening of the main diagonal at the expense of
off-diagonal terms—so long as the v; are positive and this is in general true in practical
applications. In particular, the large positive roots which are apt to cause rapid growth in
explicit procedures exercise a damping effect in implicit forms. The growth factor of the
largest root is most clearly evident in the stepping-ahead form of the harmonic equation
which has been included here on account of its formal similaraty to the wave equation.
When boundary values of z are prescribed, the eigenvalues v; are given by

v; = 4sin?{mj/(n+1)}
and the upper and lower bounds of »; are 4 and 0. For other forms of boundary conditions,
the eigenvalues can be determined by straightforward methods.

5. CONVERGENCE OF THE NUMERICAL PROCEDURES

The convergence of the procedures for the heat equation and wave equation is easily
investigated when the boundary values are zero. The initial state may be analyzed into
vector components and the convergence of the time factor for the jth component in the
solution of the /eat equation is determined by the coefficient of $* in the inverse matrices
above, i.e. by the expressions ‘

(L+«&v;)~1: implicit, (1—«v;): explicit.

If we write y=rh, (n+1)h, =1, k==(n+1)32,

N

these become

i3] i [ ran)]
[1+ (n+1)2sin (n+l and n+1 sin® (75 |-

In the limit » —o0, both these expressions approach exp (—7r 72y) for values of j which are
small compared with 7. When j is of the order of 7, both expressions vanish rapidly with
increasing 7; i.e. the higher-order terms of the difference solution do not converge to terms
of the differential solution but their contribution to the numerical solution is small. In the
explicit case, the restriction ¥ < % is needed to prevent the expression in square brackets
becoming negative and less than minus one; this restriction is not required in the implicit
case, but the freedom thus allowed may not be of much interest to a computer if he is
seeking a reasonably accurate approximation to a solution of the allied differential equation.
In the wave equation with boundary values specified as zero, we anticipate a standing-

wave type of solution and the fundamental quadratic encountered in § 2-4 should then have
imaginary roots; these roots are

implicit:  14-1(kv;)¥/(14-kv)),

explicit: 2dn?6; —1-+2iksnf,;dnd,,
where sn (0,,k) = sin{§mj/(n-+1)} (k=£k*><1).
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The time variation is determined by
[1£2i/ksin{§mj/(n+1)}]7" and (2dn?6;—1+2iksnd; dnb;)"

and convergence may be investigated as before if ./« is replaced by y(n+-1)/r. The absolute
value of the roots in the explicit case is unity; in the implicit case, the absolute value is
(1+4«v;)~* and the solution of the differential equation is approached from below.

Itmay be remarked thatitis always permissible to use quite small values of k by decreasing
h, (keeping £, fixed) and there is no apparent penalty—other than increased labour—for
doing so. It is, however, clear that in the limit x — 0 we approach the solution of the
differential-difference equation

W (0'z,|0F) = 2,41+ 2, — 22,

the exponent 7 being 1 (heat equation) or 2 (wave equation). The numerical solution for
unduly small values of x may be a satisfactory approximation to the differential-difference
solution, but it need not be a satisfactory approximation to the differential solution if the
h, mesh is coarse.

The implicit procedures examined above are always bounded but they may on occasion
yield a poorer approximation than the corresponding explicit procedure. A simple example
may point the warning against implicit reliance on implicit procedures.

TABLE 8. PROFILE OF THE STRING

K 1 1 1 5 0 0

h, & s 3 % % 0

x=} 1 1-00 1-00 1-00 1-00 1
1 2 dat 1-98 1-97 1-97 200 2 ] .,
z g[ 9ata 2-87 2.82 277 293 3 j ¥=s3
i 3 3-10 294 277 315 3

x=4% 0-91 0-94 0-91 0-96 0-99 1
1 1-74 1-76 1-66 1-79 1-88 2 .
3 2:32 2-27 2:01 2:12 2:22 2 y=1
1 2:21 2:52 1-92 1-90 1-82 2

x=}% 0-67 0-71 0-61 0-76 0-86 1
1 1-19 1-22 0-96 1-08 1-24 1 .
3 1-42 1-45 0-99 0-98 0-90 1 ¥=%
i 1-42 1-50 0-99 1-00 1-05 1

A string of unit length is plucked into an isosceles triangle of height 44, the ends of the
string being fixed. If the string is then released, the profile of the vibrating string is deter-
mined by two straight lines

ol

z, =8dx, z,=4d(1—2y) (0<x<$}0<y<

)s

which intersect on the characteristic ¥ = 3 —y.

The explicit process with « = 1 is exact here because the differences are formed sym-
metrically across the characteristic and any discontinuity in the second difference with
respect to y is cancelled by an equal discontinuity in the x-difference. The implicit process
is inexact; a few illustrative values expressed as multiples of 4 are given in table 8.
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6. CONCLUDING REMARKS
Procedures involving a larger number of points in the formulation of the governing
difference equation may be treated by the methods given above. Similarly we may, as
Todd (1956) has pointed out, use the technique to treat equations involving two space
co-ordinates. Consider, for example, the equation

0z 0%z 0%z
9 32+52 (”12) : (14)

defined in a rectangular area of the (x,y)-plane. Forming differences with mesh length 4
in the x (horizontal) and y (vertical) directions, we replace z by a rectangular z X m matrix
Z; the difference analogue of (14) is then

h*(07Z)0t) +D?Z+ZD? = F, (15)
the matrix F incorporating the boundary values. If the eigenvalues of D? are 4; and if the

eigenrows and eigencolumns are p; and r; (p;7; = 9;), we may replace Z by zf’lZ,, the z,
being rows; equation (15) can then be reduced to the row equation

12(372;/00) +2;(D?+A,) = p; F = f. (16)

At this stage, the time derivative can be approximated by a difference, the row z; becoming
a matrix. At the same time, we may decide whether to be implicit or explicit, i.e. whether
to incorporate or omit the shift operator $*.

The difference forms of the wave equation possess the simplifying feature that the roots
of the fundamental quadratic (which determines the growth of the process) are complex
and thus of equal absolute value. The difference forms of the heat equation possess only
one real root. It is then possible to study in isolation the effect of replacing the differential
operator by approximating difference operators, without reference to the nature of the
initial values or the effect of an inhomogeneous term in the differential equation. This
simplifying feature of the wave equation persists even when the operator possesses variable
coefficients if the tabular interval is chosen so that the roots of the fundamental quadratic
vary slowly; similar for the heat equation.

A very different problem exists when the solutions of a differential equation of the second
or higher order increase (or decrease’ at significantly different rates. If the equation is
replaced by a difference equation, corresponding sets of discrete solutions (increasing and
decreasing) of the difference equation will exist. It is then no longer possible to examine
the solutions of the difference equation without consideration of the initial data.

The isolation of the increasing and decreasing solutions of a second-order ordinary
differential equation has been examined in §§ 3-2, 3-3 of part I. The methods used there can
be applied to partial differential equations involving initial-value conditions when a
resolution of the type used in (16) above is practicable.

We are indebted to Mr R. S. Jenkins, who first brought to our attention the usefulness
of matrix equations in formulating partial difference equations, and to Dr R. E. Gibson,
especially for his invaluable assistance to one of us (W.G.B.) at the proof stage.
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